NYOJ回文字符串

时间限制:3000 ms | 内存限制:65535 KB
难度:4
描述
所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如”aba”。当然,我们给你的问题不会再简单到判断一个字符串是不是回文字符串。现在要求你,给你一个字符串,可在任意位置添加字符,最少再添加几个字符,可以使这个字符串成为回文字符串。
输入
第一行给出整数N(0 < N <100)
接下来的N行,每行一个字符串,每个字符串长度不超过1000.
输出
每行输出所需添加的最少字符数
样例输入
1
Ab3bd
样例输出
2
来源
IOI 2000
上传者
hzyqazasdf

分析:
看到这题,很容易想到括号匹配(二)的方法:区间dp。下面就用区间dp来求解:
定义状态dp[i][j]为区间[i,j]的需要添加的最少字符,则我们的决策有
如果s[i]==s[j],则dp[i][j]=dp[i+1][j-1]
否则,dp[i][j]=min(dp[i+1][j],dp[i][j-1]);//即在左边添加或者在区间的右边添加一个字符
注意,这题不能按照一般的区间dp那样分割字区间,因为两个回文字符的字区间组合起来不一定是回文字符!

Accpeted code:

#include<iostream>
#include<cstring>
using namespace std;

const int maxn=1005;
int dp[maxn][maxn];

int main()
{
    int t;
    cin>>t;
    string s;
    while(t--)
    {
        cin>>s;
        int n=s.size();
        for(int i=0;i<n;i++) dp[i][i]=0;

        for(int l=1;l<=n;l++)
        {
            for(int i=n-1;i>=0;i--)
            {
                int j=i+l;
                if(j>=n) continue;
                if(s[i]==s[j])
                {
                    dp[i][j]=dp[i+1][j-1];
                }
                else
                {
                    dp[i][j]=min(dp[i+1][j]+1,dp[i][j-1]+1);
                }
            }
        }

        cout<<dp[0][n-1]<<endl;
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/QingyingLiu/article/details/80690931
文章标签: DP
个人分类: DP
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭