一开始的思路是每次对小数部分×10,然后不断除2(直到小数部分小于1),再循环(直到AeB的B=0)
结果超时n次只能换方法了
AC思路:1.题意是给一个AeB,我们将其转化为C×(2的D次方)的形式,但E可以取到30,就会变成2的(2的30次方)次方,无法储存,因此对等式两边取对数,由AeB=C×2^D变成log10© + D × log10(2) = log10(A) + B
2.打表:将所有T=log10© + D × log10(2) 存入
3.将输入变成log10(A) + B的形式与表一一对应
4.用1e-4进行精度处理
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
int main ()
{
double index[10][40];
for(int i = 0; i <= 9; i++)
for(int j = 1; j <= 30; j++)
{
double m = 1 - pow(2, -1 - i), e = pow(2, j) - 1;
double t = log10(m) + e * log10(2);
index[i][j] = t;
}
double b;
int c;
while(scanf("%17lfe%d",&b,&c)!=EOF&&b)
{
int ji1;int ji2;
for(int i = 0; i <= 9; i++)
{
int flag=0;
for(int j = 1; j <= 30; j++)
{
if(log10(b)+c<=index[i][j]+1e-4&&log10(b)+c>=index[i][j]-1e-4)
{
flag=1;
ji1=i;ji2=j;
break;
}
if(flag)
break;
}
}
printf("%d %d\n",ji1,ji2);
}
return 0;
}