TopCoder Div2

代码附在文末.

多组数据一定要初始化啊啊啊
贪心要[大胆]猜想,小心证明


A

题目翻译

题目描述
有两个正整数A和B,两个操作+3或者-2。
问,至少多少次操作可以让A变到B

输入
多组数据,第一行一个整数T(1<=T<=5)
两个整数A和B(1<=A,B<=100)

输出
最少操作次数

样例输入

3
10 14
23 23
18 12

样例输出

3
0
3

Solution

多种做法, 是一道有趣的题.
最方便的做法是 \(A<B\)\(+3\), \(A>B\)\(-2\), 贪心的合理性显然可证.
至于我是类似的方法只是讨论了 A 和 B 的大小关系,手动算了一下.
考试时候神奇地把 \(A-B\) 写成了 \(B-A\) emm.


B

题目翻译

题目描述
有一个N*M的迷宫,每个格子是空地或者障碍,现在从一个起点出发,共有2中操作。

  1. 沿着上、下、左、右4个方向走到相邻的空地上,时间是1
  2. 沿着上下左右4个方向,跨越障碍,跳到最近的空地上,时间是2
    问,从起点到终点最少的时间。如果不能到达输出-1

输入
多组数据,第一行一个整数T(1<=T<=10)
第一行两个整数N和M(1<=N,M<=50),表示地图的大小
接下来N行,每行M个字符,仅包含两种字符“.”和“#”,分别表示空地和障碍
接下来4个整数r1、c1、r2、c2,表示起点和终点的行列。
起点终点保证唯一,且都是空地。

输出
从起点到终点最少时间。

样例输入

2
4 4
.##.
.###
.###
....
0 0 3 3
2 2
#.
.#
0 1 1 0

样例输出

4
-1

Solution

SPFA/Dijkstra最短路直接跑啊,
这种弱鸡题目我也会做我真是无话可说.
注意多组数据的初始化处理.


C

题目翻译

题目描述
我们称一个序列A中的某一个数为重数,当且仅当该数在序列中出现的次数超过序列长度的一半。
例如:序列{1,2,1}中,1就是重数。而在序列{1,2,3}和{1,2,1,3}中都不存在重数。
现在给定一个包含n个元素的序列A,每个元素为整数,范围在[0,m-1]。你的任务是统计出包含重数的子区间共有多少个。
由于出题人不想生成大文件。。。输入数据有3个整数构成,分别为n,seed和m。出题人告诉你用如下方法生成数据:

for i = 0 .. n-1:
    A[i] = (seed div 2^16) modulo m
    seed = (seed * 1103515245 + 12345) modulo 2^31

其中:div表示整除;^表示乘幂;modulo 表示取模

输入
三个整数n(1<=n<=10^5), seed(0<=seed<=2^31-1), m(1<=m<=50)

输出
输出生成的序列中,包含重数的子区间数量

样例输入

5
200
5


10
15
3


8
12345678
1

样例输出

8

23

36

提示

样例1解释
A = {0, 0, 1, 2, 0},包含1个元素的子区间有5个
剩下三个分别为{0, 0}、{0, 0, 1}、{0, 0, 1, 2, 0}.

Solution

这是一类典型的数列题; 不妨先考虑 \(O(n^2)\) 的做法;
因为 m 较小, 不妨把每种元素值看做颜色.
首先显然每个区间 最多只有 1 个重数, 我们可以分别考虑每种颜色对答案的贡献.
对于每种颜色, 显然我们需要枚举 两端 后在 \(O(1)\) 时间复杂度内判断该区间是否有 "重数".
可以用 前缀和 优化, 用 cnt[col][i] 表示前 i 个元素中颜色 col 出现的个数, 那么区间 [l,r] 中颜色 col 是重数的条件就是:
\[ cnt[col][r] - cnt[col][l-1] > \frac {r - l + 1}{2} \]

移项后得到:

\[ 2cnt[l-1]-l \leq 2cnt[r] - r - 2 \]

那么枚举右端点 \(i\) 后只要统计有多少个 \(1 \leq j < i\) 满足 \(2cnt[j-1] - j \leq 2cnt[r] - r - 2\) 即可, 这个操作可以中 树状数组/线段树\(O(n log n)\) 时间内求解.

这道题还有另外一种做法: 对于每种颜色, 把该颜色的点的值赋为 1, 其它颜色点的值fuw赋为 -1, 那么问题就转化为了查找有多少区间内数字的和大于0, 前缀和操作枚举右端点也可以用树状数组维护.这种方法常数更小(因为维护值的范围是原来的2/3).

我这个蒟蒻成功的又没有初始化树状数组...

参考代码

A

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;

int A, B;
const int cost1[3] = {0, 2, 4};
const int cost2[2] = {0, 3};

int main(){
    int T; scanf("%d", &T);
    while (T--){
        scanf("%d%d", &A, &B);
        if (A < B) printf("%d\n", (B - A) / 3 + cost1[(B-A) % 3]);
        else printf("%d\n", (A - B) / 2 + cost2[(A-B) % 2]);
    }
    return 0;
}

B

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define pii pair<int,int>
using namespace std;
 
const int INF = 10000000;
const int maxn = 55;
int T, n, m, r1, c1, r2, c2;
char mat[maxn][maxn];
int edgenum, head[maxn * maxn], vet[200007], nxt[200007], val[200007];
inline void addedge(int u, int v, int w){
    ++edgenum;
    vet[edgenum] = v;
    val[edgenum] = w;
    nxt[edgenum] = head[u];
    head[u] = edgenum;
}
 
inline int id(int x, int y){
    return x * m + y;
}
 
int up[maxn][maxn], left[maxn][maxn];
inline void pre(){
    for (int i = 0; i < m; ++i)
        up[0][i] = (mat[0][i] == '.') ? 0 : INF;
    for (int i = 0; i < n; ++i)
        left[i][0] = (mat[i][0] == '.') ? 0 : INF;
     
    for (int i = 1; i < n; ++i)
        for (int j = 0; j < m; ++j)
            up[i][j] = (mat[i][j] == '.') ? 0 : (up[i-1][j] + 1);
    for (int i = 0; i < n; ++i)
        for (int j = 1; j < m; ++j)
            left[i][j] = (mat[i][j] == '.') ? 0 : (left[i][j-1] + 1);       
}
 
const int dx[4] = {1, 0, 0, -1};
const int dy[4] = {0, 1, -1, 0};
inline void build(){
    memset(head, 0, sizeof(head));
    edgenum = 0;
    for (int x = 0; x < n; ++x)
        for (int y = 0; y < m; ++y){
            if (mat[x][y] == '#') continue;
            for (int k = 0; k < 4; ++k){
                int xx = x + dx[k], yy = y + dy[k];
                if (xx >= 0 && xx < n && yy >= 0 && yy < m){
                    if (mat[xx][yy] == '.') addedge(id(x,y), id(xx,yy), 1);
                    else{
                        if (up[xx][yy] < INF){
                            addedge(id(x,y), id(x - up[xx][yy] - 1, y), 2);
                            addedge(id(x - up[xx][yy] - 1, y), id(x,y), 2);
                        }
                        if (left[xx][yy] < INF){
                            addedge(id(x, y), id(x, y - left[xx][yy] - 1), 2);
                            addedge(id(x, y - left[xx][yy] - 1), id(x, y), 2);
                        }
                    }
                }
            }
        }
}
 
int dist[maxn * maxn]; bool vis[maxn * maxn];
priority_queue< pii, vector< pii >, greater< pii > >Qmin;
inline void Dijkstra(int s){
    for (int i = 0; i <= id(n, m); ++i){
        dist[i] = INF;
        vis[i] = false;     
    }
    dist[s] = 0; Qmin.push( make_pair(0, s) );
    for (int i = 0; i <= id(n, m); ++i){
        while (!Qmin.empty() && vis[Qmin.top().second]) Qmin.pop();
        if (Qmin.empty()) break;
        int u = Qmin.top().second; Qmin.pop();
        vis[u] = true;
        for (int e = head[u]; e; e = nxt[e]){
            int v = vet[e], w = val[e];
            if (dist[v] > dist[u] + w){
                dist[v] = dist[u] + w;
                Qmin.push(make_pair(dist[v], v));
            }
        }
    }
}
 
int main(){
    scanf("%d", &T);
    while (T--){
        scanf("%d%d", &n, &m);
        for (int i = 0; i < n; ++i)
            scanf("%s", mat[i]);
        scanf("%d%d%d%d", &r1, &c1, &r2, &c2);
        
        pre();
        build();
        Dijkstra(id(r1,c1));
         
        if (dist[id(r2,c2)] < INF) printf("%d\n", dist[id(r2,c2)]);
        else printf("-1\n");
    }
    return 0;
}

C

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
 
const int maxn = 100007;
const int delta = 100001;
const int maxval = 300005;
int a[maxn], cnt[maxn];
int n, seed, m;
ll Ans;
 
int C[maxn * 3];
inline int lowbit(int x){return x & (-x);}
inline void add(int i, int x){
    i = i + delta;
    for (; i <= maxval; i += lowbit(i))
        C[i] += x;
}
inline int sum(int i){
    i = i + delta;
    if (i < 1) return 0;
    int res = 0;
    for (; i >= 1; i -= lowbit(i))
        res += C[i];
    return res;
}
 
int main(){
    scanf("%d%d%d", &n, &seed, &m);
    for (int i = 1; i <= n; ++i){
        a[i] = seed / (1 << 16) % m;
        seed = ((ll)seed * 1103515245 + 12345) % (1LL << 31);
        //printf("%d\n", a[i]);
    }
     
    Ans = 0;
         
    for (int col = 0; col < m; ++col){
        memset(C, 0, sizeof(C));
         
        cnt[0] = 0;
        for (int i = 1; i <= n; ++i)
            cnt[i] = cnt[i-1] + (a[i] == col);
         
        add(-1, 1);
        for (int i = 1; i <= n; ++i){
            Ans += sum(cnt[i] * 2 - i - 2);
            //if (col <= 2)printf("%d %d\n", col, sum(cnt[i] * 2 - i - 2));
            add(cnt[i]*2-i-1, 1);
        }
    }
     
    printf("%lld\n", Ans);
    return 0;
}

转载于:https://www.cnblogs.com/YJZoier/p/9711572.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值