题目大意:计算数列a的第n项,其中:
\[a[1] = a[2] = a[3] = 1\]
\[a[i] = a[i-3] + a[i - 1]\]
\[(n ≤ 2 \times 10^9)\]
一般的递推是O(n)的,显然时间和空间都不能承受。
由于每一步递推都是相同的。这句话包含了2个层面:首先,递推式是相同的;其次,递推的条件也要是相同的。综合来说,每一步的递推都是相同的。这是应用矩阵加速递推的充分条件。
那么怎么进行矩阵加速呢?我们首先观察,第\(i\)项和哪些项有关? 与\(i-3\)和\(i-1\)优化,也就是和前3项有关。为了能够**仅仅利用矩阵就能推出\(a[i]\), 我们需要记录前3项,于是,我们构造一个3*3的矩阵:
\[ A=\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix} \]
有同学会问:这个矩阵是怎么构造出来的呢?
我们首先要构造出类似于DP的状态来存下所有计算过程中可能会用到的信息,对于这道题,我们需要记录:(假设我们要从\(a[i]\)推到\(a[i+1]\))
\[ B=\begin{bmatrix} a[i] \\ a[i-1] \\ a[i-2] \\ \end{bmatrix} \]
这个矩阵要推到:
\[ C=\begin{bmatrix} a[i+1] \\ a[i] \\ a[i-1] \\ \end{bmatrix} \]
也就是说,我们需要构造一个矩阵\(A\),使得\(A*B = C\),根据线性代数的相关定义,A一定是一个\(3*3\)的矩阵,没错吧。
那好,我们已经得到:
\[ \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \\ \end{bmatrix}*\begin{bmatrix} a[i] \\ a[i-1] \\ a[i-2] \\ \end{bmatrix} =\begin{bmatrix} a[i+1] \\ a[i] \\ a[i-1] \\ \end{bmatrix} \\A*B=C \]
我们只需要根据递推式,把矩阵\(A\)中的数填满就可以了,比如说:
由于$a[i+1] = a[i-2] +a[i] \(,而根据矩阵,\)a[i+1] = (0,0) * a[i] + (0,1) * a[i-1] + (0,2) * a[i-2]$,所以,矩阵的第一行是\(1,0,1\),以此类推,就可以吧矩阵填满了。
然后,我们可以得到:
\[ \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}*\begin{bmatrix} a[i] \\ a[i-1] \\ a[i-2] \\ \end{bmatrix} =\begin{bmatrix} a[i+1] \\ a[i] \\ a[i-1] \\ \end{bmatrix} \\A*B=C \]
可是,有了这个,怎么从\(a[1]\)推到\(a[n]\)呢?
我们知道:\(a[1] = a[2] = a[3] = 1\),如果把它们代入矩阵\(B\)(就是中间的那个矩阵),我们会得到:
\[ \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}*\begin{bmatrix} a[3]=1 \\ a[2]=1 \\ a[1]=1 \\ \end{bmatrix} =\begin{bmatrix} a[4]=1*a[3] + 1 * a[1] = 2 \\ a[3] = 1 \\ a[2] = 1 \\ \end{bmatrix} \\A * B = C \]
一开始我们只知道\(a[1], a[2], a[3]\),但是两个矩阵相乘后,我们得到了一个新的值\(a[4] = 2\),很开心有木有。如果我们用矩阵\(A\)去乘矩阵\(C\),会得到一个新的矩阵,暂且叫\(C'\),你会得到有一个新的值\(a[5]\),我们有点兴奋起来,这有点想多米诺骨牌,推到第一个,会一直向前倒,知道最后一个。我相信你脑子一定有了这样一个式子:
\[ …… \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}* \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}* \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}*\begin{bmatrix} a[3]=1 \\ a[2]=1 \\ a[1]=1 \\ \end{bmatrix} =\begin{bmatrix} a[n] \\ a[n-1] \\ a[n-2] \\ \end{bmatrix} \]
矩阵乘法有结合律(但没有交换律,不要问我为什么),所以左边一堆相同的矩阵(不妨叫系数矩阵)可以用一个括号括起来,就像这样:
\[ \left(…… \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}* \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}* \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}\right)*\begin{bmatrix} a[3]=1 \\ a[2]=1 \\ a[1]=1 \\ \end{bmatrix} =\begin{bmatrix} a[n] \\ a[n-1] \\ a[n-2] \\ \end{bmatrix} \]
想到了什么?
\[ \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}^k*\begin{bmatrix} a[3]=1 \\ a[2]=1 \\ a[1]=1 \\ \end{bmatrix} =\begin{bmatrix} a[n] \\ a[n-1] \\ a[n-2] \\ \end{bmatrix} \]
我们可以得到\(k = n - 3\)(想想为什么?),由于n很大,能不能快速求矩阵k次方呢?
在mod p意义下?矩阵乘法满足结合律?
快速幂!
为什么可以用快速幂这个黑科技呢?
普通的快速幂是用来求\(b^k mod\ p\)的,其原理是把\(k\)二进制拆分成\(k=2^{a_1}+2^{a_2}+ ……+2^{a_k}\),从而得到\(b^k mod \ p = b^{2^{a_1}} * b^{2^{a_2}} * ……*b^{2^{a_k}} mod \ p = ((b^{2^{a_1}} mod \ p) *(b^{2^{a_2}} mod \ p) * …… * (b^{2^{a_k}} mod \ p))\ mod\ p\) ,只要满足乘法结合律,就可以进行快速幂。
矩阵快速幂通常用来加速递推。比如说斐波那契数列的第n项mod p的值也可以用矩阵快速幂来求。但是并不是所有的递推都可以用矩阵快速幂,只有那些转移具有周期性的递推才能使用。
代码模块
1、矩阵的定义(结构体)
struct Square{
int mat[3][3];
void clear(){
memset(mat, 0, sizeof(mat));
}
} Base, Result;
2、方阵的乘法
void Times(Square &A, Square B){
Square C; C.clear();
for (int i = 0; i <= 2; ++i)
for (int j = 0; j <= 2; ++j)
for (int k = 0; k <= 2; ++k)
(C.mat[i][j] += (LL)A.mat[i][k] * B.mat[k][j] % p) %= p;
A = C;
}
3、矩阵快速幂
void SquareQpow(Square Base, int k){
if (k == 1){
Result = Base;
return;
}
Result.clear();
SquareQpow(Base, k / 2);
Times(Result, Result);
if (k % 2 == 1) Times(Result, Base);
}
4、矩阵初始化
void init(){
Base.clear();
Base.mat[0][0] = 1; Base.mat[0][2] = 1;
Base.mat[1][0] = 1; Base.mat[2][1] = 1;
}
易错点
- 乘法时需进行强制类型转换:
(C.mat[i][j] += (LL)A.mat[i][k] * B.mat[k][j] % p) %= p;
- C++数组从0开始的哦QAQ
- 计算答案时注意要加3项,不要只加2项
完整代码
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long
using namespace std;
const int p = 1e9 + 7;
struct Square{
int mat[3][3];
void clear(){
memset(mat, 0, sizeof(mat));
}
} Base, Result;
void init(){
Base.clear();
Base.mat[0][0] = 1; Base.mat[0][2] = 1;
Base.mat[1][0] = 1; Base.mat[2][1] = 1;
}
void Times(Square &A, Square B){
Square C; C.clear();
for (int i = 0; i <= 2; ++i)
for (int j = 0; j <= 2; ++j)
for (int k = 0; k <= 2; ++k)
(C.mat[i][j] += (LL)A.mat[i][k] * B.mat[k][j] % p) %= p;
A = C;
}
void SquareQpow(Square Base, int k){
if (k == 1){
Result = Base;
return;
}
Result.clear();
SquareQpow(Base, k / 2);
Times(Result, Result);
if (k % 2 == 1) Times(Result, Base);
}
int main(){
int T; scanf("%d", &T);
while (T--){
int n;
scanf("%d", &n);
if (n <= 3) printf("1\n");
else{
init();
SquareQpow(Base, n-3);
printf("%d\n", ((Result.mat[0][0] + Result.mat[0][1]) % p + Result.mat[0][2]) % p);
}
}
return 0;
}