并查集判断环 并查集的路径压缩 和 带秩优化

1.判断环:

参考博客
思路
1.将用过的路径连起来成为一个集合,记录下来
2. 如果连通的两个边属于一个集合,那么这个并查集就形成了一个环

灯神参考视频
灯神代码
如果删除2,4边
在这里插入图片描述在这里插入图片描述

#include <cstdio>
#include <algorithm>

using namespace std;
#define VERTICES 6

void initialise(int parent[]){
    int i;
    for(i=0; i<VERTICES; i++){
        parent[i] = -1;
    }
}

int find_root(int x,int parent[]){
    int x_root = x;
    while(parent[x_root] != -1){
        x_root = parent[x_root];
    }
    return x_root;
}
/* 1-union successfully,0-failed*/
int union_vertices(int x,int y,int parent[]){
    int x_root = find_root(x,parent);
    int y_root = find_root(y,parent);
    if(x_root == y_root){
        return 0;
    }
    else{
        parent[x_root] = y_root;
        return 1;
    }
}

int main(){
    int parent[VERTICES] = {0};
    int edges[6][2] = {
        {0,1},{1,2},{1,3},{2,4},{3,4},{2,5}// 可将2,4这条边删除测试代码是否正确 如果删除此边则不会出现环记得将6改为5
    };
    initialise(parent);
    for(int i=0; i<6; i++){//循环条件如果删除边的话 需要将6改为5 因为删除掉了一个边
        int x = edges[i][0];
        int y = edges[i][1];
        if(union_vertices(x, y, parent) == 0){
            printf("Cycle detected!\n");
            exit(0);
        }
    }
    printf("No cycle found.\n");

    return 0;
}

2.带秩优化:

在这里插入图片描述

代码实现:

用ranks [n]数组代表该父节点的秩也就是树高度

			if(ranks[end] > ranks[start])
            {
                pre[start] = end;//将树高小的连接在树高大的树上
            }
            else if(ranks[end] < ranks[start])
            {
                pre[end] = start;
            }
            else
            {
                pre[start] = end;
                ranks[end]++;
            }
路径压缩:

为了进一步减短查找路径,可以使查找路径中的每一个节点都指向根结点,这就是路径压缩。
参考博客
代码实现:

//下面是采用递归路径压缩的方法查找元素,但是,递归压缩路径可能会造成溢出栈,会发生RE
    int find(int x)
    {
    	if(x == pre[x]) return x;
    	else return pre[x] = find(pre[x]);//在寻找根节点的时候开个数组记录根节点 使每一个子节点都指向根节点从 x结点搜索到祖先结点所经过的结点都指向该祖先结点
    }
//下面我们说一下非递归方式进行的路径压缩:

int find(int x)
{
    int k, j, r;
    r = x;
    while(r != parent[r])     //查找跟节点
        r = parent[r];      //找到跟节点,用r记录下
    k = x;        
    while(k != r)             //非递归路径压缩操作
    {
        j = parent[k];         //用j暂存parent[k]的父节点
        parent[k] = r;        //parent[x]指向跟节点
        k = j;                    //k移到父节点
    }
    return r;         //返回根节点的值            
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值