大数据分析与应用:探索聚类分析的奥秘

目录

一、聚类分析的基本原理

二、聚类算法的分类

三、核心算法及其操作步骤 

1. K-Means聚类算法 

2. K-medoids聚类算法

3.K-prototype聚类算法

4. BIRCH聚类算法

5.CURE聚类算法

6.DBSCAN聚类算法

7.DENCLUE聚类算法

 8.STING聚类算法

四、聚类分析在大数据分析中的应用

五、结论


  在当今信息化时代,数据无处不在,大数据分析成为各行各业挖掘潜在价值、优化决策的重要手段。聚类分析作为数据挖掘中的一种关键技术,通过将数据集中的对象分组,使得同一组内的对象具有较高的相似性,而不同组之间的对象则相似性较低。本文将深入探讨聚类分析的基本原理、核心算法以及实际应用,并附上运行代码和经典数据示例,以期为读者提供一个全面而实用的学习指南。

一、聚类分析的基本原理

聚类分析是一种无监督学习方法,其核心思想是通过相似性度量标准,将数据集中的对象划分为若干个子集(即簇),使得同一簇内的对象相似度高,而不同簇之间的对象相似度低。这里的对象可以是数值、文本、图像等多种数据类型,相似性度量则常用欧氏距离、曼哈顿距离、余弦相似度等标准。

二、聚类算法的分类

三、核心算法及其操作步骤 

1. K-Means聚类算法 

K-Means是一种简单且广泛应用的聚类算法,它将数据集划分为K个簇,其中K是用户预先指定的正整数。算法的具体操作步骤如下:

  1. 初始化:随机选择K个数据点作为初始质心。
  2. 分配:对于数据集中的每一个数据点,计算它到各个质心的距离,并将其分配给最近的那个质心所在的簇。
  3. 更新:对于每一个簇,重新计算其质心,通常是取该簇内所有点的平均值。
  4. 迭代:重复执行分配和更新步骤,直到满足某个停止条件,如质心不再变化或达到最大迭代次数。
    import numpy as np  
    import matplotlib.pyplot as plt  
    from sklearn.cluster import KMeans  
    from sklearn.datasets import make_blobs  
      
    # 生成样本数据  
    n_samples = 300  
    random_state = 42  
    X, y = make_blobs(n_samples=n_samples, centers=4, random_state=random_state)  
      
    # 创建KMeans实例并拟合数据  
    kmeans = KMeans(n_clusters=4, random_state=random_state)  
    kmeans.fit(X)  
      
    # 预测每个样本所属的簇  
    labels = kmeans.labels_  
      
    # 获取质心  
    centroids = kmeans.cluster_centers_  
      
    # 可视化结果  
    plt.figure(figsize=(8, 6))  
    colors = ['r', 'g', 'b', 'y']  # 定义四种颜色表示四个簇  
    for i in range(4):  # 绘制属于同一簇的数据点  
        points = X[labels == i]  
        plt.scatter(points[:, 0], points[:, 1], s=50, c=colors[i], label=f'Cluster {i+1}')  
      
    # 绘制质心  
    plt.scatter(centroids[:, 0], centroids[:, 1], s=200, c='black', marker='X', label='Centroids')  
      
    # 添加图例和标题  
    plt.legend()  
    plt.title('K-Means Clustering')  
    plt.show()

     运行为:

上述代码使用make_blobs函数生成了一个包含300个样本点的数据集,分为4个中心。通过KMeans类创建了一个K-Means模型,并指定要形成的簇的数量为4。最后,利用Matplotlib绘制出数据点及它们对应的簇中心。 

2. K-medoids聚类算法

 其原理与K-Means算法相似,但关键区别在于它使用数据集中的实际点(称为medoids)作为簇的中心点,而不是像K-Means那样使用簇内所有点的平均值。与K-Means算法相比,K-medoids算法的计算复杂度更高,因为每次迭代都需要在每个簇中选择一个新的medoid,这通常涉及大量的距离计算。K-medoids算法的性能也受到初始medoids选择的影响,不同的初始选择可能导致不同的聚类结果。

3.K-prototype聚类算法

  K-medoids算法通过迭代的方式,从数据集中选择K个数据点作为medoids(中心点或代表点),然后将其余数据点分配到离它们最近的medoid所属的簇中。与K-means算法不同的是,K-medoids算法选择的medoids必须是数据集中的实际点,而不是簇内所有点的平均值。

4. BIRCH聚类算法

BIRCHBalanced Iterative Reducing and Clustering using Hierarchies)是一种特别适用于大型数据集的聚类算法。它通过构建层次结构的聚类特征树(CF Tree)来有效处理大量数据,并支持动态地调整聚类的数量。

主要特点

  • 能够在有限的内存中处理大量数据。
  • 只需一次遍历整个数据集即可构建CF树。
  • 支持动态地调整聚类的数量。
from sklearn.cluster import Birch
from sklearn import metrics
y_pred = Birch(n_clusters=None).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
#Calinski-Harabasz指数(也称为variance ratio criterion)衡量聚类间的差异与聚类内差异的比
print("Calinski-Harabasz Score", metrics.calinski_harabasz_score(X, y_pred))

 请注意,BIRCH算法的实际应用中可能需要根据具体问题调整参数,如thresholdbranching_factor,以及进行适当的数据预处理。

5.CURE聚类算法

CURE(Clustering Using Representatives)算法是一种可伸缩的层次聚类算法,特别适用于处理大型数据集、离群点和非球形簇。 

6.DBSCAN聚类算法

 DBSCAN是基于密度空间的聚类算法,在机器学习和数据挖掘领域有广泛的应用,其聚类原理通俗点讲是每个簇类的密度高于该簇类周围的密度,噪声的密度小于任一簇类的密度。如下图簇类ABC的密度大于周围的密度,噪声的密度低于任一簇类的密度,因此DBSCAN算法也能用于异常点检测。

 算法原理:

k-means聚类算法假设簇类所有方向是同等重要的,若遇到一些奇怪的形状(如对角线)时,k-means的聚类效果很差。

随机生成五个簇类的二维数据:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler

# 生成随机簇类数据
X, y =make_blobs(random_state=170,n_samples=600,centers=5)
rng = np.random.RandomState(74)
# 数据拉伸
transformation = rng.normal(size=(2,2))
X = np.dot(X,transformation)
# 绘制延伸图
plt.scatter(X[:,0],X[:,1])
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
plt.show()

散点图为: 

 

 k-means聚类结果:

 

7.DENCLUE聚类算法

 DENCLUE算法是一种基于密度的聚类算法,其原理主要依赖于对数据点周围局部密度的估计和聚类中心(也称为密度吸引点)的识别。OPTICS算法中虽然对 DBSCAN 算法进行了改进,将参数的影响降低了,但是本质上这两种算法中涉及的密度计算需要通过半径8、阅值N..两个参数,导致密度估计对半径e 非常敏感,研究者为了解决这一问题,引人了统计学的非参数密度估计方法——核密度估计(kemel density estimation),把每个观测对象都看作周围区域中高概率密度的一个指示器。一个点上的概率密度依赖于从该点到观测对象的距离。基于此,提出了 DENCLUE (DENsity CLUstEring) 算法。在该算法中,使用数学函数来描述每个样本的影响,称之为“影响函数”,通过计算所有样本的影响函数总和,构建样本空间的整体密度,即全局密度函数。在进行聚类时,依据密度吸引点,即全局密度函数的最大值,来实现聚类。

 

 8.STING聚类算法

 STING (Statistical Infomation Grid) 算法是一种基于网格的多分辨率的聚类技术,该算法将样本空间区域划分成矩形单元,采用分层和递归方法进行样本空间划分,高层的毎个单元被划分成多个底一层的单元,如图所示。不同层次的矩形单元对应不同的分辨率。每个网格单元的属性的统计信息被作为统计参数预先计算和存储。该算法处理速度很快,其处理时间独立于数据对象的数目,只与量化空间中每一维的单元数有关。

STING聚类层次结构:

 

四、聚类分析在大数据分析中的应用

聚类分析在大数据分析中的应用广泛且深入,以下是一些典型的应用场景:

  1. 市场细分:通过分析消费者的购买行为、偏好等信息,将市场细分为不同的客户群体,为精准营销提供依据。

  2. 异常检测:在金融交易、网络安全等领域,通过聚类分析识别出与正常行为模式显著不同的异常交易或活动,及时预警潜在风险。

  3. 文本挖掘:将相似的文档或段落聚集成簇,有助于信息分类、主题提取和摘要生成,提升信息检索效率。

  4. 图像分割:在图像处理中,聚类分析可用于将图像分割成不同的区域,便于后续的特征提取和目标识别。

  5. 推荐系统:基于用户的历史行为和兴趣,通过聚类找到相似用户群体,从而为用户提供个性化的推荐服务。

五、结论

聚类分析作为大数据分析中的关键技术之一,具有广泛的应用前景和深远的意义。随着数据规模的不断扩大和算法的不断优化,聚类分析将在更多领域发挥重要作用。未来,我们可以期待更加高效、稳定的聚类算法的出现,以及聚类分析与其他技术的深度融合和创新应用。

通过本文的探讨,相信读者已经对聚类分析的基本原理、核心算法以及实际应用有了更深入的了解。希望这些知识和示例代码能够帮助读者在大数据分析和应用领域取得更好的成绩。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值