2017多校联合训练1
菜鸡只能补6题。
Add More Zero
题目:求2^m - 1 > 10 ^ k,求k的最大值
水题,直接算k / lg 2 \lg 2 lg2 即可,比赛时还傻傻的打了个表二分。。
#include <bits/stdc++.h>
#define ll long long
#define MAXN 100005
using namespace std;
ll m;
double t;
bool check(ll n) {
return m > n / t;
}
ll binary_search(ll l, ll r) {
ll mid = l + r >> 1;
ll ans = mid;
while (l <= r) {
mid = l + r >> 1;
if (check(mid)) {
ans = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
return ans;
}
ll ans[MAXN];
int main() {
int cas = 1;
t = log10(2);
for (ll i = 0; i <= 100000; i++) {
m = i;
ans[i] = binary_search(0, 100000);
}
while (~scanf("%lld", &m)) {
printf("Case #%d: %lld\n", cas++, ans[m]);
}
}
##Balala Power!##
个人感觉挺恶心的一道模拟贪心题。
题目意思是。给n条只由小写字母组成的字符串,你可以将a-z逐一表示成0-25,现在问将每一串表示成26进制数后,相加求10进制的最大值。
思路:将所有串按照右部为尾端来构成一个序列,每一个串为一行,对每一列从右边开始加就有26^0xxx + 26^1yyy…
这里只需要将整个字符串倒置即可。。
按照每一列字符出现的次数排序,如果相同则比较下一列。
然后贪心选取最先出现的小写字符,将他们赋值。
最后要注意到不能有前导0,则读入的时候标记一下不能为前导0的字符。
所有数赋值后,若最后一个数为0且为某一串开头,则逐步往前移动至可以为0开头的字符。
这里要注意。统计每一列的字符的个数的时候,要记得进位!!!!
跟队友wa死了一下午这里。。
#include <bits/stdc++.h>
#define MAXN 100025
#define ll long long
#define MOD 1000000007
using namespace std;
struct node {
ll idx, val, let;
node(){}
node(ll _idx, ll _val, ll _let) {
idx = _idx;
val = _val;
let = _let;
}
} lets[30];
ll tot[MAXN][30];
ll rec[MAXN];
ll val[30];
bool head[30];
ll lmax;
int cmp(node a, node b) {
if (a.val != b.val) {
return a.val > b.val;
}
for (ll i = a.idx - 1; i >= 0; i--) {
if (tot[i][a.let] != tot[i][b.let]) {
return tot[i][a.let] > tot[i][b.let];
}
}
return 0;
}
int cmp2(node a, node b) {
return a.val < b.val;
}
void init() {
memset(tot, 0, sizeof(tot));
memset(head, false, sizeof(head));
memset(val, -1, sizeof(val));
rec[0] = 1;
for (ll i = 1; i < MAXN; i++) {
rec[i] = (rec[i - 1] * 26) % MOD;
}
}
ll calc() {
ll ans = 0;
for (ll i = 0; i < lmax; i++) {
for (ll j = 0; j < 26; j++) {
if (val[j] != -1 && tot[i][j]) {
ans = (ans + (((val[j] * rec[i]) % MOD) * tot[i][j]) % MOD) % MOD;
}
}
}
return ans;
}
int main() {
ll n, cas = 1;
char ch[MAXN];
while (~scanf("%lld", &n)) {
init();
lmax = 0;
ll maxt = 25;
for (ll i = 0; i < n; i++) {
scanf("%s", ch);
ll len = strlen(ch);
if (len > 1) {
head[ch[0] - 'a'] = true;
}
lmax = max(lmax, len);
for (ll j = 0; j < len; j++) {
tot[j][ch[len - 1 - j] - 'a']++;
if (tot[j][ch[len - 1 - j] - 'a'] == 26) {
tot[j][ch[len - 1 - j] - 'a'] = 0;
tot[j + 1][ch[len - 1 - j] - 'a']++;
if (j == len - 1) {
lmax = max(lmax, len + 1);
}
}
}
}
for (ll i = lmax - 1; i >= 0; i--) {
for (ll j = 0; j < 26; j++) {
lets[j] = node(i, tot[i][j], j);
}
sort(lets, lets + 26, cmp);
for (ll j = 0; j < 26; j++) {
if (val[lets[j].let] == -1 && tot[i][lets[j].let]) {
val[lets[j].let] = maxt--;
}
}
}
if (maxt == -1) {
for (ll i = 0; i < 26; i++) {
lets[i] = node(0, val[i], i);
}
sort(lets, lets + 26, cmp2);
if (head[lets[0].let]) {
ll tmp = 1;
while (head[lets[tmp].let] && tmp < 26) {
tmp++;
}
if (tmp != 26) {
for (ll i = 0; i < tmp; i++) {
val[lets[i].let] = val[lets[i + 1].let];
}
val[lets[tmp].let] = 0;
}
}
}
printf("Case #%lld: %lld\n", cas++, calc());
}
}
##Colorful Tree##
题意:给一棵树,每两点之间的距离为:他们路径上所有点不同颜色的个数。现在求对于整个图的n * (n - 1) / 2条路径,他们总距离为多少。
思路:
该题可以将模型进行转换,求总图每两点之间的距离之和,可以看成,对于每一个颜色,经过它的不同路径有多少条,求所有颜色分别经过他们的不同路径之和。
还可以转换成,所有路径*总颜色个数,除去不经过某种颜色的路径之和,即为答案。
orz摩拜tls大佬想出这种题。
类似树形dp,对于每一个颜色的节点,维护该点颜色时,他的子节点除去了相同颜色子树的个数。
最后要注意到,最顶部的那个节点的其他颜色是没有dp到的,最后再组合维护一下即可。
#include <bits/stdc++.h>
#define MAXN 200005
#define ll long long
using namespace std;
ll col[MAXN];
ll size[MAXN]; //记录子节点数
ll sum[MAXN]; //记录截断值,即为该点到所有不同颜色的节点,到相同颜色的节点时结束。
vector<ll> g[MAXN];
bool vis[MAXN];
ll mark[MAXN];
ll ans;
void addEdge(ll u, ll v) {
g[v].push_back(u);
}
void init() {
ans = 0;
memset(mark, 0, sizeof(mark));
memset(vis, false, sizeof(vis));
memset(size, 0, sizeof(size));
memset(sum, 0, sizeof(sum));
for (ll i = 0; i < MAXN; i++) {
g[i].clear();
}
}
void dfs(ll u) {
size[u] = 1;
vis[u] = true;
ll len = g[u].size();
ll all = 0;
for (ll i = 0; i < len; i++) {
ll to = g[u][i];
ll s = sum[col[u]];
if (vis[to]) {
continue;
}
dfs(to);
size[u] += size[to];
ll step = sum[col[u]] - s; //截断后的数量
all += step;
ans += (size[to] - step) * (size[to] - step - 1) / 2;
}
sum[col[u]] += size[u] - all;
}
int main() {
ll n, u, v, cas = 1;
while (~scanf("%lld", &n)) {
init();
ll tt = 0;
for (ll i = 1; i <= n; i++) {
scanf("%lld", &col[i]);
tt += mark[col[i]] ^ 1;
mark[col[i]] = 1;
}
for (ll i = 0; i < n - 1; i++) {
scanf("%lld %lld", &u, &v);
addEdge(u, v);
addEdge(v, u);
}
dfs(1);
ll lstans = n * (n - 1) * tt / 2;
for (ll i = 1; i <= n; i++) {
if (tt != col[1] && mark[i]) {
ans += (n - sum[i]) * (n - sum[i] - 1) / 2;
}
}
printf("Case #%lld: %lld\n", cas++, lstans - ans);
}
}
##Function##
题意:对于f(i)=bf(ai)一个函数,有a和b序列,现在问你可以构成f(x)的情况有多少种
不知从何找到的规律,将a序列和b序列根据下标和值打环,若a的某个环上的点可以整除b的某个环上的点。则肯定满足。
打环统计一下数就好了。。暴力最大情况O(n * m) 卡过了。。
#include <bits/stdc++.h>
#define MAXN 100005
#define ll long long
#define MOD 1000000007
using namespace std;
bool mark[MAXN];
ll a[MAXN], b[MAXN];
ll alen, blen, t;
vector<ll> res[2];
void init() {
alen = blen = 0;
for (ll i = 0; i < 2; i++) {
res[i].clear();
}
}
void dfs(ll u, ll *num) {
if (mark[u]) {
return ;
}
mark[u] = true;
t++;
dfs(num[u], num);
}
int main() {
ll n, m, cas = 1;
while (~scanf("%lld %lld", &n, &m)) {
init();
for (ll i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
for (ll i = 0; i < m; i++) {
scanf("%lld", &b[i]);
}
memset(mark, false, sizeof(mark));
for (ll i = 0; i < n; i++) {
if (!mark[i]) {
t = 0;
dfs(i, a);
res[0].push_back(t);
}
}
memset(mark, false, sizeof(mark));
for (ll i = 0; i < m; i++) {
if (!mark[i]) {
t = 0;
dfs(i, b);
res[1].push_back(t);
}
}
alen = res[0].size(), blen = res[1].size();
ll ans = 1;
for (ll i = 0; i < alen; i++) {
ll tt = 0;
for (ll j = 0; j < blen; j++) {
if (res[0][i] % res[1][j] == 0) {
tt += res[1][j];
tt %= MOD;
}
}
ans = (ans * tt) % MOD;
}
printf("Case #%lld: %lld\n", cas++, ans);
}
}
##Hints of sd0061##
题目:给一个递推函数构成的ai序列,m次询问,问第bi小的数的值是多少。(从0开始)
思路:直接排序是不行的,将询问的方式排个序,用nth_element每次缩小区间找第n大的数即可。
#include <bits/stdc++.h>
#define ull unsigned int
#define MAXN 10000005
using namespace std;
ull x, y, z;
ull a[MAXN];
ull ans[105];
int b[105], pos[105];
ull rng61() {
ull t;
x ^= x << 16;
x ^= x >> 5;
x ^= x << 1;
t = x;
x = y;
y = z;
z = t ^ x ^ y;
return z;
}
int cmp(int aa, int bb) {
return b[aa] < b[bb];
}
int main() {
ull A, B, C;
int n, m;
int cas = 1;
while (~scanf("%d %d %u %u %u", &n, &m, &A, &B, &C)) {
x = A, y = B, z = C;
for (int i = 0; i < m; i++) {
scanf("%d", &b[i]);
pos[i] = i;
}
sort(pos, pos + m, cmp);
for (int i = 0; i < n; i++) {
a[i] = rng61();
}
pos[m] = m;
b[pos[m]] = n;
for (int i = m - 1; i >= 0; i--) {
nth_element(a, a + b[pos[i]], a + b[pos[i + 1]]);
ans[pos[i]] = a[b[pos[i]]];
}
printf("Case #%d:", cas++);
for (int i = 0; i < m; i++) {
printf(" %u", ans[i]);
}
puts("");
}
}
##KazaQ’s Socks##
题目:有一个人穿袜子,每次选最小号码的袜子,每n-1天会把袜子拿去洗一次,问第k天穿了哪个号吗的袜子。
水题,找到循环节,前n个数为1-n,后面每2 * (n - 1)一个循环节。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main() {
ll n, k, cas = 1;
while (~scanf("%lld %lld", &n, &k)) {
printf("Case #%lld: ", cas++);
if (k <= n) {
printf("%lld\n", k);
} else {
ll p = (k - n) % (2 * (n - 1));
if (p == 0) {
p = 2 * (n - 1);
}
if (p <= n - 1) {
printf("%lld\n", p);
} else {
p -= n - 1;
if (p == n - 1) {
printf("%lld\n", n);
} else {
printf("%lld\n", p);
}
}
}
}
}