【Leetcode】贪心算法篇(一)

本文介绍了贪心算法的基本步骤,通过455.分发饼干问题展示了如何寻找局部最优解并堆叠成全局最优解。接着,探讨了376.摆动序列的最长子序列求解,强调了在判断连续差值间的正负交替。最后,讲解了53.最大子序和问题,通过不断累加和判断子数组最大和,实现求解连续子数组的最大和。这些案例揭示了贪心算法和动态规划在解决实际问题中的应用。
摘要由CSDN通过智能技术生成

贪心算法

贪心算法一般分为如下四步:

  1. 将问题分解为若干个子问题
  2. 找出适合的贪心策略
  3. 求解每一个子问题的最优解
  4. 将局部最优解堆叠成全局最优解

455. 分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

在这里插入图片描述
在这里插入图片描述

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(g);//孩子 [1,2,3]
        Arrays.sort(s);//饼干 [1,1]
        int index=s.length-1;
        int count=0;
        for (int i =g.length-1; i >=0 ; i--) {
            if(index>=0 && g[i]<=s[index]) {
                count++;
                index--;
            }
        }
        return count;
    }
}

376. 摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/wiggle-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

class Solution {
    public int wiggleMaxLength(int[] nums) {
i		if(nums.length==0 || nums.length==1){
            return nums.length;
        }
        int res=1;
        
        int prediff=0;//上一个差值
        int curdiff=0;//当前差值
        for (int i = 1; i <nums.length ; i++) {
            curdiff=nums[i]-nums[i-1];
            if((curdiff>0 && prediff<=0) || (curdiff<0 && prediff>=0)) {
                res++;
                prediff = curdiff;
            }
        }
        return res;
    }
    
}

53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
在这里插入图片描述

class Solution {
    public int maxSubArray(int[] nums) {
        int count=0;
        int res=Integer.MIN_VALUE;
        
        for (int i = 0; i < nums.length; i++) {
            count+=nums[i];
            if(count>=res){// 取区间累计的最大值(相当于不断确定最大子序终止位置)
                res=count;
            }
            if(count<0){//说明加上了一个很大的负数 直接跳过他 重新开始
                count=0;
            }
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值