贪心算法
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
455. 分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
class Solution {
public int findContentChildren(int[] g, int[] s) {
Arrays.sort(g);//孩子 [1,2,3]
Arrays.sort(s);//饼干 [1,1]
int index=s.length-1;
int count=0;
for (int i =g.length-1; i >=0 ; i--) {
if(index>=0 && g[i]<=s[index]) {
count++;
index--;
}
}
return count;
}
}
376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。
相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/wiggle-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public int wiggleMaxLength(int[] nums) {
i if(nums.length==0 || nums.length==1){
return nums.length;
}
int res=1;
int prediff=0;//上一个差值
int curdiff=0;//当前差值
for (int i = 1; i <nums.length ; i++) {
curdiff=nums[i]-nums[i-1];
if((curdiff>0 && prediff<=0) || (curdiff<0 && prediff>=0)) {
res++;
prediff = curdiff;
}
}
return res;
}
}
53. 最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
class Solution {
public int maxSubArray(int[] nums) {
int count=0;
int res=Integer.MIN_VALUE;
for (int i = 0; i < nums.length; i++) {
count+=nums[i];
if(count>=res){// 取区间累计的最大值(相当于不断确定最大子序终止位置)
res=count;
}
if(count<0){//说明加上了一个很大的负数 直接跳过他 重新开始
count=0;
}
}
return res;
}
}