大家好!我是曾续缘🤪
今天是《LeetCode 热题 100》系列
发车第 85 天
动态规划第 5 题
❤️点赞 👍 收藏 ⭐再看,养成习惯
零钱兑换 给你一个整数数组
coins
,表示不同面额的硬币;以及一个整数amount
,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回
-1
。你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins =[1, 2, 5]
, amount =11
输出:3
解释:11 = 5 + 5 + 1示例 2:
输入:coins =[2]
, amount =3
输出:-1示例 3:
输入:coins = [1], amount = 0 输出:0提示:
难度:💖💖
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
解题方法
我们可以使用动态规划来解决这个问题。首先创建一个长度为 amount + 1
的数组 dp
,其中 dp[i]
表示凑齐金额 i
所需要的最少硬币个数。初始化将 dp
数组所有元素值设为 amount + 1
,这个值相当于无穷大,用来表示不可能凑齐该金额。
然后,我们从金额 1
开始遍历到 amount
,对于每个金额 i
,再遍历硬币数组 coins
中的每个硬币面额 coins[j]
。如果当前硬币面额 coins[j]
小于等于当前金额 i
,则更新 dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1)
,即当前金额 i
所需的最少硬币个数为当前值和减去当前硬币面额后的金额所需硬币个数加一的较小值。
最终返回 dp[amount]
,如果其值大于 amount
,表示无法凑齐该金额,返回 -1
;否则返回 dp[amount]
。
Code
public class Solution {
public int coinChange(int[] coins, int amount) {
// 初始化最大值为 amount + 1
int max = amount + 1;
// 创建 dp 数组,记录凑齐各个金额所需的最少硬币个数
int[] dp = new int[amount + 1];
// 将 dp 数组所有元素值设为 max
Arrays.fill(dp, max);
// 初始金额为 0 时,所需硬币个数为 0
dp[0] = 0;
// 遍历金额从 1 到 amount
for (int i = 1; i <= amount; i++) {
// 遍历硬币数组
for (int j = 0; j < coins.length; j++) {
// 如果当前硬币面额小于等于当前金额
if (coins[j] <= i) {
// 更新最少硬币个数
dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
}
}
}
// 返回最终结果,若大于 amount 则无法凑齐,返回 -1,否则返回 dp[amount]
return dp[amount] > amount ? -1 : dp[amount];
}
}