Dijkstra 算法最短路模板

Dijkstra 算法
从单个源点出发,到所有节点的最短路
#include<iostream>
#include<vector>
#include<cstring>
#include<queue>
#define maxn 100
#define INF 100000
using namespace std;
struct Edge{
	int from,to,dis;
	Edge(int u,int v,int d):from(u),to(v),dis(d){}
};
struct HeapNode{//最小d值和对应的结点编号 
	int d,u;
	bool operator <(const HeapNode &rhs) const{
		return d>rhs.d;
	}  
};
struct Dijkstra{
	int n,m;
	vector<Edge> edge;//存放图中各条边的情况 
	vector<int> G[maxn];//从G[u]出发对应的边的编号,方便寻找到各边
	bool done[maxn];//是否已访问 
	int d[maxn];//源点到各边的情况 
	int p[maxn];//最短路中的一条边
	void init(int n){//初始化 
		this->n=n;
		for(int i=0;i<n;i++)  G[i].clear();
		edge.clear();
	}
	void AddEdge(int from,int to,int dis){//添加边 
		edge.push_back(Edge(from,to,dis));//如果是无向图,需要调用两次
		m=edge.size();
		G[from].push_back(m-1);
	}
	void dijkstra(int s){//求s到所有点的距离
		priority_queue<HeapNode> Q;
		for(int i=0;i<n;i++) d[i]=INF;
		d[s]=0;
		memset(done,0,sizeof(done));
		Q.push(HeapNode{0,s});
		while(!Q.empty()){
			HeapNode x=Q.top();Q.pop();
			int u=x.u;
			if(done[u]) continue;
			done[u]=true; 
			for(int i=0;i<G[u].size();i++){
				Edge &e=edge[G[u][i]]; 
				if(d[e.to]>d[u]+e.dis){
				    d[e.to]=d[u]+e.dis;
				    p[e.to]=G[u][i];
				    Q.push(HeapNode{d[e.to],e.to});
				}
			}
		}
	}
	
};
int main(){
	int n,m;
	scanf("%d%d",&n,&m);
	Dijkstra dt;
	dt.init(n);
	for(int i=0;i<m;i++){
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		dt.AddEdge(a,b,c);
	}
	dt.dijkstra(0);
	for(int i=0;i<n;i++){
		cout<<dt.d[i]<<endl;
	}
	
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>