一、题目描述
实现 int sqrt(int x) 函数。
计算并返回 x 的平方根,其中 x 是非负整数。
由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。
二、解题思路
使用二分查找法(又叫折半查找法),这里就详细讲解一下数据结构中的二分查找法吧:
将表中间middle=4对应的关键字与查找关键字比较,如果两者相等则查找成功,否则利用中间位置记录将表分成前后两个子表,如果中间记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足天哦建的记录,是查找成功,或直到子表不存在,此时查找不成功。其中每一次的middle=(left+right)/2,向下取整。
在知道了二分查找的思想之后我们代入题中分析:x的平方根是满足k^2<=x,另外直觉上一个数的平方根一定不会超过它的一半,当然有特殊情况0和1。
三、代码编写步骤:
第一步:特殊值判断,将0和1这两个值排除
第二步:给出平方根要搜索的的区域left=1;right=x/2
第三步:下面为mid赋值,然后进行判断:mid>x/mid,其实就是mid*mid>x的判断,如果成立说明x的平方根应该是在[left,mid-1]
如果不成立则下一个搜索空间应该是[mid,right] 。
四、代码演示
class Solution {
public int mySqrt(int x) {
// 特殊值判断
if (x == 0) {
return 0;
}
if (x == 1) {
return 1;
}
int left = 1;
//如果x是一个奇数,right是向下取整的。
int right = x / 2; //这里是向下取整的
// 在区间 [left..right] 查找目标元素
while (left < right) {
//计算出来的带小数的都向上取整
int mid = (left+right)/2+1;
// 注意:这里为了避免乘法溢出,改用除法
if (mid > x / mid) {
// 下一轮搜索区间是 [left..mid - 1]
right = mid - 1;
} else {
// 下一轮搜索区间是 [mid..right]
left = mid;
}
}
return left;
}
}
第16行:之所以(left+right)/2+1中加1是因为除法是向下取整的,所以在第12行计算right时实际的搜索空间是变小了的,假如x=0,这里x/2=4,比自身的一半小。在计算一些特例如4时,它的平方根就是自身的一半,所以不合适。还有一个原因是:
我这里以数字9为例,且mid= (left+right)/2计算式我不加1,我们来分析一下:
第一轮循环:left=1,right=4,mid=2
在第18行判断时mid>x/mid返回的是false,走else里面的代码此时left=2。
第二轮循环:left=2,right=4,mid=3
在18行判断时mid>x/mid返回的是false,走else里面的代码此时left=3。
第三轮循环:left=3,right=4,mid=3
在18行判断时mid>x/mid返回的是false,走else里面的代码此时left=3。
有没有发现第三次循环left=mid=3进入了死循环,就算再进行循环left还是等于3。这也是为什么这里需要加1向上取整的原因。
left=3。
有没有发现第三次循环left=mid=3进入了死循环,就算再进行循环left还是等于3。这也是为什么这里需要加1向上取整的原因。