7.X的平方根

一、题目描述

实现 int sqrt(int x) 函数。

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wKH1ApoS-1623678169709)(C:\Users\86182\AppData\Roaming\Typora\typora-user-images\image-20210603194736553.png)]

二、解题思路

使用二分查找法(又叫折半查找法),这里就详细讲解一下数据结构中的二分查找法吧:

将表中间middle=4对应的关键字与查找关键字比较,如果两者相等则查找成功,否则利用中间位置记录将表分成前后两个子表,如果中间记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足天哦建的记录,是查找成功,或直到子表不存在,此时查找不成功。其中每一次的middle=(left+right)/2,向下取整。
在这里插入图片描述
在知道了二分查找的思想之后我们代入题中分析:x的平方根是满足k^2<=x,另外直觉上一个数的平方根一定不会超过它的一半,当然有特殊情况0和1。

三、代码编写步骤:

第一步:特殊值判断,将0和1这两个值排除

第二步:给出平方根要搜索的的区域left=1;right=x/2

第三步:下面为mid赋值,然后进行判断:mid>x/mid,其实就是mid*mid>x的判断,如果成立说明x的平方根应该是在[left,mid-1]

如果不成立则下一个搜索空间应该是[mid,right] 。

四、代码演示

class Solution {
    public int mySqrt(int x) {
        // 特殊值判断
        if (x == 0) {
            return 0;
        }
        if (x == 1) {
            return 1;
        }
        int left = 1;
        //如果x是一个奇数,right是向下取整的。
        int right = x / 2;  //这里是向下取整的
        // 在区间 [left..right] 查找目标元素
        while (left < right) {
            //计算出来的带小数的都向上取整
            int mid = (left+right)/2+1;
            // 注意:这里为了避免乘法溢出,改用除法
            if (mid > x / mid) {
                // 下一轮搜索区间是 [left..mid - 1]
                right = mid - 1;
            } else {
                // 下一轮搜索区间是 [mid..right]
                left = mid;
            }
        }
        return left;
    }
}

第16行:之所以(left+right)/2+1中加1是因为除法是向下取整的,所以在第12行计算right时实际的搜索空间是变小了的,假如x=0,这里x/2=4,比自身的一半小。在计算一些特例如4时,它的平方根就是自身的一半,所以不合适。还有一个原因是:

我这里以数字9为例,且mid= (left+right)/2计算式我不加1,我们来分析一下:

第一轮循环:left=1,right=4,mid=2

在第18行判断时mid>x/mid返回的是false,走else里面的代码此时left=2。

第二轮循环:left=2,right=4,mid=3

在18行判断时mid>x/mid返回的是false,走else里面的代码此时left=3。

第三轮循环:left=3,right=4,mid=3

在18行判断时mid>x/mid返回的是false,走else里面的代码此时left=3。

有没有发现第三次循环left=mid=3进入了死循环,就算再进行循环left还是等于3。这也是为什么这里需要加1向上取整的原因。
left=3。

有没有发现第三次循环left=mid=3进入了死循环,就算再进行循环left还是等于3。这也是为什么这里需要加1向上取整的原因。

根据引用中的解释,一个数的平方根最多不会超过它的一半。所以对于69这个数,它的平方根最多不会超过34.5。为了计算出精确的平方根值,我们可以使用引用中提到的求解方程f(x) = x^2 - a的正根的方法。根据引用,我们可以实现一个函数sqrt(x),来计算并返回x的平方根,其中x是非负整数并且返回类型是整数。根据引用中的方法,我们可以使用二分法来逐步逼近平方根的值。具体步骤如下: 1. 设定左边界low为0,右边界high为x。 2. 当low小于等于high时,执行以下步骤: a. 计算中间值mid,即mid = (low + high) / 2。 b. 如果mid的平方等于x,返回mid作为x的平方根。 c. 如果mid的平方大于x,将high更新为mid - 1。 d. 如果mid的平方小于x,将low更新为mid + 1。 3. 返回low - 1作为x的平方根。 根据以上步骤,我们可以得到69的平方根为8。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【LeetCode】69. x 的平方根](https://blog.csdn.net/weixin_41888257/article/details/108357200)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [【Leetcode刷题笔记】69. x的平方根](https://blog.csdn.net/xqh_Jolene/article/details/124820855)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [leetcode : 69. x 的平方根](https://download.csdn.net/download/angelloveyou/10675944)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值