42.斐波那契数

一、题目描述

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 01 开始,后面的每一项数字都是前面两项数字的和。也就是:

在这里插入图片描述
给你 n ,请计算 F(n)
在这里插入图片描述

提示:

  • 0 <= n <= 30

二、解题思路

动态规划五部曲是从某个大佬的文档中学到的,专门用来求解动态规划的题目,很好用,后面有关动态规划的题目都将使用动规五部曲。

动态规划五部曲:

第一步:确定dp数组以及下标的含义

​ dp[i]的定义为:第i个数的斐波那契数值是dp[i]

第二步:确定递推公式

​ 状态转移⽅程 dp[i] = dp[i - 1] + dp[i - 2];

第三步:dp数组初始化

dp[0] = 0;
dp[1] = 1; 

当然代码中写的是如下,那么for循环中也要做小小的修改。

dp[1] = 1;
dp[2] = 1; 
for(int i=2; i<=n; i++){
	dp[i] = dp[i-1] + dp[i-2];
}

第四步:确定遍历顺序

​ 从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序

⼀定是从前到后遍历的

第五步:举例推导dp数组

​ 按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导⼀下,当N为10的时候,dp数组应该是如下的

数列:0 1 1 2 3 5 8 13 21 34 55

三、代码演示

class Solution {
    public int fib(int n) {
        if(n<2){
            return n;
        }
        int[] dp = new int[n+1];
        dp[1] = 1;
        dp[2] = 1;
        for(int i=3; i<=n; i++){
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值