leetcode - 210. Course Schedule II

算法系列博客之拓扑排序

拓扑排序在实际生活中的应用非常的广泛,比如自动生成课表,时间安排表等等,也正是智能助手所需处理的众多事务中的一种
本篇博客将着手于解决有向图的拓扑排序问题

问题描述:

There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.
There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

Input Sample:
4, [[1,0],[2,0],[3,1],[3,2]]
Output Sample:
[0,1,2,3]    or     [0,2,1,3]

这个问题看似复杂,但比对一下就能发现,如果将每节课看作是一个节点,某节课必须在另一节课的前面看作是一条有向边
那么这个问题就化为了有向图的拓扑排序问题
还需要解决的一个问题就是是否有解,想想一个有向图能够进行拓扑排序的条件是无环,否则拓扑排序根本就没有意义

模型建立起来之后,再来考虑方法,拓扑排序常见的有两种:DFS法和入度数组法

  • DFS法
        对有向图进行DFS搜索,并记录访问每个节点前的时刻(pre值)和每个节点访问结束的时刻(post值),按post值从大到小排序得到的即是拓扑序,若是DFS数中有回边就意味着有向图不满足无环的性质
        为了避免得到post值再进行排序,实际上可以在DFS过程结束访问某个节点的时候将其放进列表,完成之后将列表倒置即可
        确认是否有回边也无需等待DFS做完在判断,而是在DFS过程中就完全可以完成判断,即另开一个标志数组Onpath,在访问之前设置为true,访问之后设置为false,如果后访问的节点有指向onpath值为true节点的边,则存在回向边即有环存在
class Solution(object):
    def __init__(self):
        self.adj_list = []
    def findOrder(self, numCourses, prerequisites):
        res = []
        self.adj_list = [[] for i in range(numCourses)]
        for li in prerequisites:
            self.adj_list[li[1]].append(li[0])
        if self.dfs(res, numCourses):
            res.reverse()
            return res
        else :
            return []

    def dfs(self, res, numCourses):
        visited = [False] * numCourses
        onpath = [False] * numCourses
        for x in range(numCourses):
            if not visited[x] and not self.explore(x, res, visited, onpath):
                return False
        return True

    def explore(self, nodeNum, res, visited, onpath):
        onpath[nodeNum] = visited[nodeNum] = True
        for x in self.adj_list[nodeNum]:
            if onpath[x] or (not visited[x] and not self.explore(x, res, visited, onpath)):
                return False
        res.append(nodeNum)
        onpath[nodeNum] = False
        return True
  • 入度数组法
        理论依据(定理):任意的有向无环图都有至少一个源顶点(入度为0)和至少一个汇顶点(出度为0)
        定义产生了这样一个算法:任意找到一个源顶点放入拓扑数组,从图中删除并修改相关点的入度,直到图为空,或者找不到源顶点为止
        注意寻找源顶点的技巧,可以创建一个列表来存储源顶点,修改入度的时候碰到为0的加到列表中即可
class Solution(object):
    def __init__(self):
        self.adj_list = []
    def findOrder(self, numCourses, prerequisites):
        res = []
        indegree = [0 for i in range(numCourses)]
        self.adj_list = [[] for i in range(numCourses)]
        for li in prerequisites:
            self.adj_list[li[1]].append(li[0])
            indegree[li[0]] += 1
        if self.topSort(numCourses, indegree, res):
            return res
        else :
            return []

    def topSort(self, numCourses, _indegree, res):
        indegree = _indegree.copy()
        deleted = [False for i in  range(numCourses)]
        indeg0 = []
        for i in range(numCourses):
            if indegree[i] == 0:
                indeg0.append(i)
        while numCourses:
            if len(indeg0) == 0:
                return False
            numCourses -= 1
            sourceNum = indeg0.pop(0)
            deleted[sourceNum] = True
            res.append(sourceNum)
            for x in self.adj_list[sourceNum]:
                if deleted[x]:
                    return False
                indegree[x] -= 1
                if indegree[x] == 0:
                    indeg0.append(x)
        return True

以上两种算法均为最多只需要遍历每个节点即可找出解,每个节点遍历其边;而空间上,开出的内存空间最大也就是边的数量加上节点的数量;
因而两种算法的时间复杂度和空间复杂度均为O(v+e)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值