一、冒泡排序
按照从小到大排序
每次比较两个数的大小,把大的数放后面,第一次比较完之后,最大的数会放在最后。然后比较下一轮。
def bubble_sort(alist):
"""冒泡排序"""
n = len(alist)
for j in range(n-1):
#判断是否要交换位置
count = 0
for i in range(0, n-1-j):
# 班长从头走到尾
if alist[i] > alist[i+1]:
alist[i],alist[i+1] = alist[i+1], alist[i]
count += 1
#如果count=0 即没有交换位置 数组是排序号的数字 此时的时间复杂度最低
if 0 == count:
return
# [1, 2,3 ,4 ,5, 6]
# i 0 ~ n-2 range(0, n-1) j=0
# i 0 ~ n-3 range(0, n-1-1) j=1
# i 0 ~ n-4 range(0, n-1-2) j=2
# j=n i range(0, n-1-j)
if __name__ == "__main__":
li = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print(li)
bubble_sort(li)
print(li)
时间复杂度
最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)-----改进代码后才可以实现最优时间复杂度
最坏时间复杂度:O(n2)
稳定性:稳定
最优时间复杂度
二、选择排序
按照从小到大排序,每次都选择一个最小的数字放在最前面
alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]
alist = [17, 20, 93,54,77,31,44,55,226]
0 1 2 3 4 5 6 7 8
j=0
min = 0 0+1
alist[0], alist[3] = alist[3], alist[0]
j=1
min = 1 1+1
alist[1], alist[8] = alist[8], alist[1]
j=2
min = 2 2+1
def select_sort(alist):
"""选择排序"""
n = len(alist)
for j in range(n-1): # j: 0 ~ n-2
min_index = j
for i in range(j+1, n):
if alist[min_index] > alist[i]:
min_index = i
#遍历完成一次之后找到最终最小值的下标之后交换位置
alist[j], alist[min_index] = alist[min_index], alist[j]
时间复杂度
最优时间复杂度:O(n2)
最坏时间复杂度:O(n2)
稳定性:不稳定(考虑升序每次选择最大的情况)
三、插入排序
相当于前面的数字是排好序的数字,后面的数字是没有排序的数
第一次取第一个数为排好序的数,然后第二个数与第一个数比较,如果比第一个数小则交换位置。
此时前面两个数排序完成。
然后第三个数与第二个数比较,如果比第二个数小则交换位置,交换完成之后与第一个数比较
def insert_sort(alist):
# 从第二个位置,即下标为1的元素开始向前插入
for i in range(1, len(alist)):
# 从第i个元素开始向前比较,如果小于前一个元素,交换位置
for j in range(i, 0, -1):#j = i [ i,i-1,i-2,i-3.....1]
if alist[j] < alist[j-1]:
alist[j], alist[j-1] = alist[j-1], alist[j]
def insert_sort2(alist):
'插入排序代码另一种写法'
n = len(alist)
# 从右边的无序序列中取出多少个元素执行这样的过程
for i in range(1, n):
# i = [1, 2, 3, n-1]
#j代表内层循环起始值
j = i #[j ,j-1,j-2,j-3.....1]
#执行从右边的无序序列中取出的第一个元素,即i位置的元素,然后将其插入到前面的正确位置中
while j > 0:
if alist[j] < alist[j-1]:
alist[j], alist[j-1] = alist[j-1], alist[j]
j -= 1
else: break# 本步对算法进行了优化
# 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
# 最坏时间复杂度:O(n2)
if __name__=='__main__':
alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]
insert_sort(alist)
print(alist)
alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]
insert_sort2(alist)
print(alist)
时间复杂度
最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
最坏时间复杂度:O(n^2)
稳定性:稳定
四、希尔排序
希尔排序的基本思想是:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。最后整个表就只有一列了。将数组转换至表是为了更好地理解这算法,算法本身还是使用数组进行排序。
例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):
13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10
然后我们对每列进行排序:
10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45
将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:
10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45
排序之后变为:
10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94
最后以1步长进行排序(此时就是简单的插入排序了)
# coding:utf-8
def shell_sort(alist):
"""希尔排序"""
# n=9
n = len(alist)
# gap =4
gap = n // 2
# i = gap
# for i in range(gap, n):
# # i = [gap, gap+1, gap+2, gap+3... n-1]
# while:
# if alist[i] < alist[i-gap]:
# alist[i], alist[i-gap] = alist[i-gap], alist[i]
# gap变化到0之前,插入算法执行的次数
while gap > 0:
# 插入算法,与普通的插入算法的区别就是gap步长
for j in range(gap, n):
# j = [gap, gap+1, gap+2, gap+3, ..., n-1]
i = j
while i > 0:
if alist[i] < alist[i-gap]:
alist[i], alist[i-gap] = alist[i-gap], alist[i]
i -= gap
else:
break
# 缩短gap步长
gap //= 2
if __name__ == "__main__":
li = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print(li)
shell_sort(li)
print(li)
时间复杂度
- 最优时间复杂度:根据步长序列的不同而不同
- 最坏时间复杂度:O(n2)
- 稳定想:不稳定
五、快速排序
步骤为:
- 从数列中挑出一个元素,称为"基准"(pivot),
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
具体思路: alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]
将第一个数54作为基准,有两个指针,第一个low指向第一个位置的数字54,high指向最后一个位置的数字20.
比较low和high数字的大小,如果high>low high的指针往左移动,如果high<low 把high的数字放在low的位置,判断low和high,如果low<high low的位置右移一,如果low>high 把low的数字放在high的位置,直到low和high重合,此时找到了第一个数的排序后的位置。再重复第一个数左边和右边的数字排序。
# coding:utf-8
def quick_sort(alist, first, last):
"""快速排序"""
if first >= last:
return
mid_value = alist[first]
low = first
high = last
while low < high:
# high 左移
while low < high and alist[high] >= mid_value:
high -= 1
alist[low] = alist[high]
while low <high and alist[low] < mid_value:
low += 1
alist[high] = alist[low]
# 从循环退出时,low==high
alist[low] = mid_value
# 对low左边的列表执行快速排序
quick_sort(alist, first, low-1)
# 对low右边的列表排序
quick_sort(alist, low+1, last)
if __name__ == "__main__":
li = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print(li)
quick_sort(li, 0, len(li)-1)
print(li)
六、归并排序
归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。
将数组分解最小之后,然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。
# coding:utf-8
def merge_sort(alist):
"""归并排序"""
n = len(alist)
if n <= 1:
return alist
mid = n//2
# left 采用归并排序后形成的有序的新的列表
left_li = merge_sort(alist[:mid])
# right 采用归并排序后形成的有序的新的列表
right_li = merge_sort(alist[mid:])
# 将两个有序的子序列合并为一个新的整体
# merge(left, right)
left_pointer, right_pointer = 0, 0
result = []
while left_pointer < len(left_li) and right_pointer < len(right_li):
if left_li[left_pointer] <= right_li[right_pointer]:
result.append(left_li[left_pointer])
left_pointer += 1
else:
result.append(right_li[right_pointer])
right_pointer += 1
result += left_li[left_pointer:]
result += right_li[right_pointer:]
return result
if __name__ == "__main__":
li = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print(li)
sorted_li = merge_sort(li)
print(li)
print(sorted_li)
# merge_sort [54, 26, 93, 17, 77, 31, 44, 55, 20]
#
# left_li = merge_sort [54, 26, 93, 17]
#
# left_li = merge_sort [54, 26]
# left_li = [26, 54]
#
#
# left_li = [54]
# right_li = [26]
# result = [26, 54]
# return result
#
# right_li = merge_sort([93, 17])
#
# left_li = merge_sort([93])
#
# return [93]
# left_li =[93]
#
# right_li = merge_sort([17])
#
# return [17]
# right_li = [17]
#
# result = [17, 93]
#
# return result
#
# right_li = [17, 93]
#
# result = [17, 26, 54, 93]
#
# return result
#
# left_li = [17, 26, 54, 93]
#
# right_li = merge_sort([77, 31, 44, 55, 20])
#
#
# result = []
# return result
时间复杂度
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(nlogn)
空间复杂度比别的排序大,因为执行完之后是新的列表,需要在新列表上保存处理(sorted_alist = mergeSort(alist)
),不像别的排序都是在自身排序。 - 归并排序的效率远高于选择排序和冒泡排序
- 稳定性:稳定