上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 53 5 2 6 4
5 6 00
8 1 73 6 2 8 9 7 5
7 4 78 7 6 0 0
3 8 68 6 4
5 3 56 5 2 0 0
-1 -1
Sample Output
Yes
Yes
No
解题思路:
1.由于本题属于并查集,所以一定会用到并和查函数
2.任意两个节点都必须有一条通路,也就是说必须相连(如果有一个孤立的节点就直接No了),难点是如何用代码表示“节点不能形成一个闭合环”
3.因为刚开始一个新的章节,如何存入数据,以什么形式输入也是一个突破点
4.记得每一次循环要把准备工作做好(还原数组)
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
using namespace std;
#define MAXN 100010
bool Set[MAXN];
int pre[MAXN];
bool flag=1;
int Find(int x) //查 一层一层向上查找父亲
{
while(pre[x]!=x)
{
x=pre[x];
}
return x;
}
void join(int x,int y) //并 把x的父亲设为y
{
int fx=Find(x),fy=Find(y);
if(fx!=fy)
{
pre[fx]=fy;
}
else //这里是比较创新的一个位置因为说明:如果有一个孤立的节点就直接No了
{
flag=0;
}
}
int main()
{
//freopen("d:\\A.txt","r",stdin);
int a,b;
int cut=0;//记录有几个 非孤立的节点
//初始化两个数组
memset(Set,0,sizeof(Set));
for(int i=1;i<=MAXN;i++)
{
pre[i]=i;//把所有的父亲都设为本身
}
while(cin>>a>>b)
{
if(a==-1&&b==-1)break;
if(a!=0||b!=0)
{
if(Set[a]==0)
{
cut++;
Set[a]=1;
}
if(Set[b]==0)
{
cut++;
Set[b]=1;
}
if(a<b)//总是把大的数设为节点,就避免了重复
{
join(a,b);
}
else
{
join(b,a);
}
}
else
{
int n=0; //记录有几条边
for(int i=1;i<=MAXN;i++)
{
if(pre[i]!=i)//说明已经和别人建立联系的 方法
{
n++;
}
}
for(int i=1;i<MAXN;i++)
{
pre[i]=i;
Set[i]=0; //还原语句,因为不能再回去初始化了
}
// cout<<"n:"<<n<<"cut:"<<cut<<"flag"<<flag;
if(flag && (n==(cut-1)||n==0&cut==0))cout<<"Yes"<<endl;
else cout<<"No"<<endl;
flag=1;
cut=0;
}
}
return 0;
}