A - 小希的迷宫

上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。 

Input

输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。 
整个文件以两个-1结尾。 

Output

对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。 

Sample Input

6 8  53  5 2 6 4

5 6  00

 

8 1  73  6 2 8 9  7 5

7 4  78  7 6 0 0

 

3 8  68  6 4

5 3  56  5 2 0 0


-1 -1

Sample Output

Yes

Yes

No

解题思路:

         1.由于本题属于并查集,所以一定会用到并和查函数

         2.任意两个节点都必须有一条通路,也就是说必须相连(如果有一个孤立的节点就直接No了),难点是如何用代码表示“节点不能形成一个闭合环”

         3.因为刚开始一个新的章节,如何存入数据,以什么形式输入也是一个突破点

        4.记得每一次循环要把准备工作做好(还原数组)



#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
using namespace std;

#define MAXN 100010
bool Set[MAXN];
int pre[MAXN];
bool flag=1;

int Find(int x) //查 一层一层向上查找父亲
{
    while(pre[x]!=x)
    {
       x=pre[x];
    }
    return x;
}

void join(int x,int y) //并 把x的父亲设为y
{
    int fx=Find(x),fy=Find(y);
    if(fx!=fy)
    {
        pre[fx]=fy;
    }
    else //这里是比较创新的一个位置因为说明:如果有一个孤立的节点就直接No了
    {
        flag=0;
    }
}
int main()
{
    //freopen("d:\\A.txt","r",stdin);
    int a,b;
    int cut=0;//记录有几个 非孤立的节点

    //初始化两个数组
    memset(Set,0,sizeof(Set));
    for(int i=1;i<=MAXN;i++)
    {
        pre[i]=i;//把所有的父亲都设为本身
    }
    while(cin>>a>>b)
    {
        if(a==-1&&b==-1)break;
       if(a!=0||b!=0)
       {
           if(Set[a]==0)
           {
               cut++;
               Set[a]=1;
           }
           if(Set[b]==0)
           {
               cut++;
               Set[b]=1;
           }
           if(a<b)//总是把大的数设为节点,就避免了重复
           {
               join(a,b);
           }
           else
           {
               join(b,a);
           }
       }
       else
       {
           int n=0;    //记录有几条边
           for(int i=1;i<=MAXN;i++)
           {
               if(pre[i]!=i)//说明已经和别人建立联系的 方法
               {
                   n++;
               }
           }
           for(int i=1;i<MAXN;i++)
           {
               pre[i]=i;
               Set[i]=0;           //还原语句,因为不能再回去初始化了
           }

          // cout<<"n:"<<n<<"cut:"<<cut<<"flag"<<flag;
           if(flag && (n==(cut-1)||n==0&cut==0))cout<<"Yes"<<endl;
           else cout<<"No"<<endl;
           flag=1;
           cut=0;
       }
    }

    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值