SDUT-3302-效率至上-RMQ||线段树

RMQ:

可以去寻找一个区域中的最小的值

那样也可以去寻找最大的值啊

RMQ

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<stdlib.h>
using namespace std;
int mn[51000][50];
int mx[51000][50];
int ls[51000];
int n, m;
void RMQ_min()///小的
{
    int i, j;
    for( i = 1; i <= n; i++)
        mn[i][0] = ls[i];
    for(j = 1; (1<<j) <= n; j++)
        for(i = 1; i+(1<<j)-1<=n;i++)
          mn[i][j] = min(mn[i][j-1],mn[i+(1<<(j-1))][j-1]);
}
void RMQ_max()///大的
{
    int i, j;
    for( i = 1; i <= n; i++)
        mx[i][0] = ls[i];
    for(j = 1; (1<<j) <= n; j++)
        for(i = 1; i+(1<<j)-1<= n;i++)
          mx[i][j] = max(mx[i][j-1],mx[i+(1<<(j-1))][j-1]);
}
int RN(int l,int r)
{
    int k = 0;
    while(1<<(k+1) <= r-l+1)
        k++;
    return min(mn[l][k],mn[r-(1<<k)+1][k]);
}
int RX(int l,int r)
{
    int k = 0;
    while(1<<(k+1) <= r-l+1)
        k++;
    return max(mx[l][k],mx[r-(1<<k)+1][k]);
}
int main()
{

    while(~scanf("%d%d",&n,&m))
    {
        memset(mn,0,sizeof(mn));
        memset(mx,0,sizeof(mx));
       int i;
       for(i = 1; i <= n; i++)///从1开始注意
            scanf("%d",&ls[i]);
        RMQ_min();
        RMQ_max();
        int l, r;
        for(i = 0; i < m; i++)
        {
            scanf("%d%d",&l,&r);
            printf("%d\n",RX(l,r)-RN(l,r));
        }
    }
    return 0;
}
 

线段树

#include <bits/stdc++.h>
#define LL long long
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define INF 0x3f3f3f3f
using namespace std;
const int N =5e4+10;
int maxn[N<<2];
int mm[N<<2];
void pushup(int rt)
{
    maxn[rt]=max(maxn[rt<<1],maxn[rt<<1|1]);
    mm[rt]=min(mm[rt<<1],mm[rt<<1|1]);
}
void build(int l,int r,int rt)
{
    if(l==r)
    {
        scanf("%d",&maxn[rt]);
        mm[rt]=maxn[rt];
        return;
    }
    int mid=(l+r)>>1;
    build(lson);
    build(rson);
    pushup(rt);
}
int Query1(int L,int R,int l,int r,int rt)
{
    if(L<=l&&R>=r)
    {
        return maxn[rt];
    }
    int mid=(l+r)>>1;
    if(R<=mid)
        return Query1(L,R,lson);
    else if(L>mid)
       return Query1(L,R,rson);
    else
     return max(Query1(L,mid,lson),Query1(mid+1,R,rson));
}
int Query2(int L,int R,int l,int r,int rt)
{
    if(L<=l&&R>=r)
    {
        return mm[rt];
    }
    int mid=(l+r)>>1;
    if(R<=mid)
        return Query2(L,R,lson);
    else if(L>mid)
        return Query2(L,R,rson);
    else
     return min(Query2(L,mid,lson),Query2(mid+1,R,rson));
}

int main()
{
    int m,n;
    int u,v;
    while(~scanf("%d%d",&n,&m))
    {
        build(1,n,1);
        while(m--)
        {
            scanf("%d%d",&u,&v);
            printf("%d\n",Query1(u,v,1,n,1)-Query2(u,v,1,n,1));
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值