IGWO-SVM:改良的灰狼优化算法改进支持向量机。
采用三种改进思路:两种Logistic和Tent混沌映射和采用DIH策略。
采用基于DIH维度学习的狩猎搜索策略为每只狼构建邻域,增强局部和全局搜索能力,收敛速度比GWO更快,适用于paper。
YID:4850656044236748
Matlab与优化算法
IGWO-SVM: 改良的灰狼优化算法改进支持向量机
摘要:本文介绍了一种改进的灰狼优化算法,命名为IGWO-SVM,以改进支持向量机(SVM)的性能。IGWO-SVM采用了三种改进思路:两种Logistic和Tent混沌映射,以及采用DIH(Dimension-Induced Hunting)策略。通过将这些改进引入灰狼优化算法中,可以提高算法的搜索能力和收敛速度,使其更加适用于处理paper等任务。
-
引言
灰狼优化算法(GWO)是一种基于自然界灰狼群体行为的优化算法,已经在多个领域取得了良好的效果。然而,在应用于支持向量机这样的任务时,GWO仍存在一些问题,如搜索能力较弱、收敛速度较慢等。为了解决这些问题,本文提出了一种改进的灰狼优化算法-IGWO-SVM。 -
IGWO-SVM算法设计
2.1 两种Logistic和Tent混沌映射的应用
在传统的灰狼优化算法中,采用随机值来生成灰狼种群的初始位置。为了增加搜索的多样性和灵活性,本文引入了两种混沌映射函数,即Logistic和Tent混沌映射,用于产生初始位置。这样可以使得灰狼种群更好地覆盖搜索空间,提高全局搜索能力。
2.2 DIH策略的应用
为了增强灰狼种群的搜索能力,本文采用了DIH策略,即基于DIH维度学习的狩猎搜索策略。该策略通过为每只狼构建邻域,使得每只狼能够同时进行局部和全局搜索。具体地,通过计算灰狼的适应度函数值以及邻域狼的适应度函数值,进一步调整灰狼的位置,以实现更好的搜索效果。实验结果表明,采用DIH策略的IGWO-SVM在收敛速度上比传统的GWO更快。
-
实验与结果分析
本文采用了多个经典的数据集进行了实验,比较了IGWO-SVM和传统的GWO-SVM的性能差异。实验结果表明,IGWO-SVM在求解支持向量机问题上具有更好的性能,能够更快地收敛到最优解,并且具有更好的分类准确率。 -
结论
本文提出了一种改良的灰狼优化算法-IGWO-SVM,并将其应用于支持向量机。通过引入两种混沌映射和DIH策略,IGWO-SVM显著提高了灰狼优化算法的搜索能力和收敛速度。实验结果表明,IGWO-SVM在求解支持向量机问题上具有更好的性能,为处理paper等任务提供了一种有效的优化算法。未来的研究可以进一步探索IGWO-SVM在其他领域的应用,以及进一步优化算法的参数和性能。
关键词:灰狼优化算法,支持向量机,IGWO-SVM,Logistic混沌映射,Tent混沌映射,DIH策略,局部搜索,全局搜索,收敛速度,分类准确率
相关的代码,程序地址如下:http://coupd.cn/656044236748.html