数学分析学习(三)

数列极限

数列极限的定义

数列极限的定义就是著名的 ϵ − N \epsilon-N ϵN语言。在微积分刚被发明的时候,没有对极限给过严格的定义,导致了第二次数学危机。在柯西(1789-1857)和维尔斯特拉斯(1815-1897)的努力下,才基本摆脱了这次危机。
数列极限的定义:
x n {x_n} xn是一个数列,如果对于任意给定的 ϵ > 0 \epsilon > 0 ϵ>0,存在正整数 N ∈ N + N \in \mathbb{N^+} NN+,对于任意的 n > N n > N n>N,都有 ∣ x n − a ∣ < ϵ |x_n -a| < \epsilon xna<ϵ,记做 lim ⁡ n → ∞ a n = a \lim\limits_{n \to \infty} a_n = a nliman=a x n x_n xn收敛于a,如果不存在极限a则称数列 x n x_n xn发散

这个定义告诉我们这几件事。
(1). ϵ \epsilon ϵ具备任意性
(2). ϵ \epsilon ϵ在给定的情况下, N N N也就给定了,可以说 N N N随着 ϵ \epsilon ϵ的给定而给定
(3). ∣ x n − a ∣ < ϵ ⇒ a − ϵ < x n < a + ϵ |x_n -a| < \epsilon \Rightarrow a-\epsilon<x_n <a+\epsilon xna<ϵaϵ<xn<a+ϵ,以 ϵ \epsilon ϵ为半径的开区间 ( a − ϵ , a + ϵ ) (a-\epsilon,a+\epsilon) (aϵ,a+ϵ)称为a的领域
(4)."充分大"等价于存在正整数N,对于任意的 n > N n>N n>N,以后碰到“充分大”完全可以等价翻译出来
(5).对于数列极限而言前N项无论如何变化都不会影响数列极限最终的结果

极限的证明在数学分析中是一个相当重要的问题。证明的方式主要有三类:
1.等价代换法:
∣ x n − a ∣ < ϵ ⟶ 解 不 等 式 得 到 n > N ( ϵ ) , 令 N = [ N ( ϵ ) ] 或 者 N = [ N ( ϵ ) ] + 1 即 可 |x_n -a| < \epsilon \stackrel{解不等式}\longrightarrow 得到n > N(\epsilon),令N=[N(\epsilon)]或者N=[N(\epsilon)]+1即可 xna<ϵn>N(ϵ)N=[N(ϵ)]N=[N(ϵ)]+1
2.放大法
∣ x n − a ∣ < ϵ , 如 果 这 个 不 等 式 不 好 解 , 可 以 尝 试 放 大 一 下 。 ∣ x n − a ∣ ≤ H ( n ) , 解 H ( n ) < ϵ , n > N ( ϵ ) 。 这 里 需 要 注 意 的 是 , 放 大 后 的 不 等 式 需 要 满 足 0 < H ( n ) < ϵ 。 原 因 是 ϵ 是 任 意 给 定 的 大 于 0 , 必 然 有 上 面 的 不 等 式 。 |x_n -a| < \epsilon,如果这个不等式不好解,可以尝试放大一下。|x_n -a| \le H(n),解H(n) < \epsilon,n > N(\epsilon)。这里需要注意的是,放大后的不等式需要满足0<H(n)<\epsilon。原因是\epsilon是任意给定的大于0,必然有上面的不等式。 xna<ϵxnaH(n)H(n)<ϵn>N(ϵ)0<H(n)<ϵϵ0
3.分步法
如 果 ∣ x n − a ∣ < ϵ 这 个 不 等 式 不 好 解 , 可 以 放 大 一 些 。 ∣ x n − a ∣ ≤ H ( n ) 。 但 是 , 这 个 不 等 式 , 只 有 n 充 分 大 的 时 候 才 成 立 , 即 存 在 正 整 数 N 1 , 使 得 ∣ x n − a ∣ ≤ H ( n ) 。 通 过 H ( n ) < ϵ , 得 到 n > N ( ϵ ) , 即 N = m a x { N ( ϵ ) , N 1 } 的 时 候 , ∣ x n − a ∣ < ϵ 成 立 如果|x_n -a| < \epsilon这个不等式不好解,可以放大一些。|x_n -a| \le H(n)。但是,这个不等式,只有n充分大的时候才成立,即存在正整数N_1,使得|x_n -a| \le H(n)。通过H(n) < \epsilon, 得到n > N(\epsilon),即N = max\{ N(\epsilon), N_1\}的时候,|x_n -a| < \epsilon成立 xna<ϵxnaH(n)nN1使xnaH(n)H(n)<ϵn>N(ϵ)N=max{N(ϵ),N1}xna<ϵ
补充
无穷小量:无穷小量是以0为极限的数列。
定义:对于任意给定的 ϵ > 0 \epsilon > 0 ϵ>0,存在正整数 N ∈ N + N \in \mathbb{N^+} NN+,对于任意的 n > N n > N n>N,都有 ∣ x n ∣ < ϵ |x_n| < \epsilon xn<ϵ,则称 x n x_n xn为无穷小量。

数列极限证明举例

1.证明数列 { n n + 3 } 的 极 限 是 1 \{\frac{n}{n+3}\}的极限是1 {n+3n}1
证明的关键在于找到 N N N,首先根据 ϵ − N \epsilon-N ϵN语言,存在正整数 N N N对于任意的 n > N n>N n>N得到下面的不等式:
∣ n n + 3 − 1 ∣ < ϵ |\frac{n}{n+3}-1| < \epsilon n+3n1<ϵ
解出该不等式,立刻得到 n > 3 ϵ − 3 n > \frac{3}{\epsilon}-3 n>ϵ33为了取整数N,所以取 N = [ 3 ϵ ] + 1 N=[\frac{3}{\epsilon}]+1 N=[ϵ3]+1

讨论:这里为啥可以取 N = [ 3 ϵ ] + 1 N=[\frac{3}{\epsilon}]+1 N=[ϵ3]+1?首先,由 n > 3 ϵ − 3 n > \frac{3}{\epsilon}-3 n>ϵ33,知道n取比 3 ϵ − 3 \frac{3}{\epsilon}-3 ϵ33大的都可以,而 3 ϵ + 1 \frac{3}{\epsilon}+1 ϵ3+1肯定是大于 3 ϵ − 3 \frac{3}{\epsilon}-3 ϵ33。虽然从计算上看 3 ϵ − 3 \frac{3}{\epsilon}-3 ϵ33是要更加精确,但是找N的原则是找到即可,不需要精确。而且,这里的 3 ϵ − 3 \frac{3}{\epsilon}-3 ϵ33不能保证它是一个整数。所以N取 [ 3 ϵ ] + 1 [\frac{3}{\epsilon}]+1 [ϵ3]+1可以保证定义的要求。

2.证明数列 q n {q^n} qn( 0 < ∣ q ∣ < 1 0 < |q| < 1 0<q<1)是无穷小量
证明:对于任意给定的 ϵ > 0 \epsilon > 0 ϵ>0,存在正整数 N N N,有这个不等式:
∣ q n ∣ < ϵ |q^n|<\epsilon qn<ϵ去绝对值得到 ∣ q ∣ n < ϵ |q|^n<\epsilon qn<ϵ,再两边取对数,得到
n lg ⁡ ∣ q ∣ < lg ⁡ ϵ n\lg |q| < \lg \epsilon nlgq<lgϵ
⇓ \Downarrow
n > lg ⁡ ϵ lg ⁡ ∣ q ∣ n > \frac{\lg \epsilon}{\lg |q|} n>lgqlgϵ因为 0 < ∣ q ∣ < 1 0<|q|<1 0<q<1,那么 lg ⁡ ∣ q ∣ < 0 \lg |q| < 0 lgq<0,所以小于变成大于。那么N取什么值呢?注意

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rockyou666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值