2025年MathorCup数学应用挑战赛【B题成品论文】第一问(免费分享)

注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢!

  音智策引迁程,老城焕新颜

第一问

五、 模型建立与求解

5.1 问题一模型建立与求解

5.1.1 问题一求解思路

在问题一中,任务的核心是构建一个合理的搬迁补偿决策模型,以推动居民在城市更新中的主动参与。考虑到老城院落具有传统合院结构和空间利用复杂的特点,居民搬迁意愿受到多个因素的共同影响,其中包括现有地块的面积与新迁入地块面积之间的比例关系、住宅朝向带来的采光差异、以及搬迁后房屋可能进行的修缮翻新。因此,我们首先应建立一个反映居民主观满意度的多因素综合模型,该模型以搬迁后的居住条件提升为基础,设定“面积补偿”、“采光补偿”与“修缮补偿”三个主要指标,同时引入地块地理位置因素(如距离街道的远近、周边密集度等)作为辅助项进行加权评估。基于此满意度函数,可以判断在不同补偿策略下居民是否同意搬迁,从而为后续搬迁计划提供评估依据。此外,还需注意一些潜在但关键的影响因子,如居住习惯依赖、邻里关系、文化保护心理等非量化变量,它们可以通过专家赋权或设定评价指标的方式,定性引入模型之中。

5.1.2 问题一模型建立
(1)问题背景与目标

本问题要求我们建立一个多因素综合的居民搬迁满意度与补偿建模系统,以便评估每一户居民是否愿意在现有条件下接受“平移置换”式的搬迁。建模目标是:

a. 给出一种合理的搬迁意愿量化方式;
b. 综合考虑面积、采光、修缮等补偿方式;
c. 评估迁入候选地块对当前居住地的改善程度;
d. 推导可接受搬迁的居民列表,为问题二提供候选方案池。

(2)变量定义与参数设定

设街区中共有 n 个当前有居民居住的地块,编号为 i =1,2,...,n,共有 m 个空置地块可用于搬迁,编号为 j =1,2,...,m。我们定义如下变量:

(3)满意度模型构建

(4)补偿因素约束条件

面积补偿约束:

(6)模型输出与作用

该模型可输出:

a. 可搬迁居民列表;
b. 可行搬迁路径 (i, j);
c. 搬迁满意度评分矩阵 U ;
d. 修缮总预算与期望满意度提升评估;
e. 为问题二提供搬迁可行性边界与候选集。

5.1.3 问题一模型求解与分析

为科学衡量居民对“平移置换”式搬迁的接受程度,我们设计了一套搬迁补偿满意度评价模型,综合考虑了居住面积、采光条件、修缮投入及地块地理便利性等因素。通过构建多因子加权满意度函数,我们能够对每一对“居民地块-候选地块”组合进行评分,并以此判定其是否具有搬迁的可能性。

模型中,我们定义居民满意度函数为:

通过遍历所有居民与空置地块的组合,我们生成了搬迁满意度评分矩阵,并以热力图形式进行可视化,如图 1 所示。横轴表示候选目标地块,纵轴表示当前居民地块,颜色越深表示该搬迁组合的满意度评分越高。该热力图直观展示了全体搬迁可行路径的质量分布情况,有助于后续的最优搬迁策略决策。

居民地块对各目标地块的搬迁满意度评分热力图

进一步地,我们依据评分矩阵提取每位居民搬迁满意度最高的前 3 个候选地块,形成了搬迁推荐结果表(见表 2)。该表记录了每个居民可能搬迁的目标地块ID、评分细节及是否满足搬迁阈值条件,为后续搬迁优化提供可选解空间。

从结果来看,大多数居民在当前空置资源池中,均可找到2~3个符合条件的替代居住地块,且满意度评分普遍集中于 0.7 至 1.3 之间,说明“同区域平移式置换”在规划上具备一定的可行性。少数居民由于当前地块面积较大或朝向较好,在目标候选集中未能满足全部搬迁约束,此类情况可通过引入“分批搬迁”“修缮加强”或“组合置换”等策略予以优化。
综上,本模型有效量化了搬迁可行性与居民接受度,并为问题二提供了一个具有可行解约束条件的搬迁路径候选库,奠定了后续优化调度的基础。

参考文献

[1]汤国生.基于SWOT分析法的大学生数学建模创新实践基地建设探索——以江苏科技大学为例[J].高教学刊,2023,9(11):53-56.DOI:10.19980/j.CN23-1593/G4.2023.11.013.
[2]谢雨婧,韩惠丽.北师大版初中数学教材中数学建模的多维度分析[J].教学与管理,2023(09):73-76.
[3]刘志梅.数学建模与高职数学教学的深度融合[J].佳木斯职业学院学报,2023,39(03):152-154.
[4]许亚桃,吴立宝.基于Delphi-AHP高中数学建模教学评价指标体系的研究[J].内江师范学院学报,2023,38(02):113-119.DOI:10.13603/j.cnki.51-1621/z.2023.02.018.
[5]杨本朝,石雅男,段乾恒,李光松,于刚.大学生数学建模竞赛开展全周期教学实践探究[J].大学教育,2023(04):44-46.
[6]黄健,徐斌艳.国际视野下数学建模教与学研究的发展趋势——基于第14届国际数学教育大会的分析[J].数学教育学报,2023,32(01):93-98.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值