阅兵方阵(蓝桥杯2018真题)

该博客讨论了一个数学问题,即如何确定最少数量的士兵可以形成12种不同的双方阵。通过优化算法,寻找满足条件的最小整数解。文章以x国和y国的阅兵为背景,提出了至少需要多少士兵才能完成12种方阵变换的问题,并给出了一段C++代码实现来解决这个问题。
摘要由CSDN通过智能技术生成

题目:阅兵方阵


题目描述
x国要参加同盟阅兵活动。
主办方要求每个加盟国派出的士兵恰好能组成 2 个方阵。
x国发现弱小的 y国派出了130人的队伍,他们的士兵在行进中可以变换2种队形:
130 = 81 + 49 = 9^2 + 7^2
130 = 121 + 9 = 11^2 + 3^2

x国君很受刺激,觉得x国面积是y国的6倍,理应变出更多队形。
于是他发号施令:
我们要派出一支队伍,在行进中要变出 12 种队形!!!

手下人可惨了,要忙着计算至少多少人才能组成 12 种不同的双方阵。
请你利用计算机的优势来计算一下,至少需要多少士兵。

(ps: 不要失去信心,1105人就能组成4种队形了)

注意,需要提交的是一个整数,表示至少需要士兵数目,不要填写任何多余的内容。

下面的代码是以正常的输入输出写的。

输入一个整数n, 输出所需士兵的最少数目。

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
	int n;
	cin>>n; 
    for(int i=1; ; i++)
    {
    	int cnt=0;
    	for(int j=1; j*j*2<=i; j++)
    	{
//      这里j*j*2<=i,乘二是一种时间优化
//  	可以类比求素数时 k=sqrt(n),
//  	“中间”之后的部分若符合的话,
//  	 “中间”之前必有与它相匹配的 
//  	所以只需根据题意判断
//      “中间”前后部分运算量较少的那一部分 
    		int k = i-j*j;
    		int t = sqrt(k);
    		if(t*t == k) cnt++;
		}
		if(cnt==n)
		{
			cout<<i<<endl;
			break;
		}
	}

    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值