题目:阅兵方阵
题目描述
x国要参加同盟阅兵活动。
主办方要求每个加盟国派出的士兵恰好能组成 2 个方阵。
x国发现弱小的 y国派出了130人的队伍,他们的士兵在行进中可以变换2种队形:
130 = 81 + 49 = 9^2 + 7^2
130 = 121 + 9 = 11^2 + 3^2
x国君很受刺激,觉得x国面积是y国的6倍,理应变出更多队形。
于是他发号施令:
我们要派出一支队伍,在行进中要变出 12 种队形!!!
手下人可惨了,要忙着计算至少多少人才能组成 12 种不同的双方阵。
请你利用计算机的优势来计算一下,至少需要多少士兵。
(ps: 不要失去信心,1105人就能组成4种队形了)
注意,需要提交的是一个整数,表示至少需要士兵数目,不要填写任何多余的内容。
下面的代码是以正常的输入输出写的。
输入一个整数n, 输出所需士兵的最少数目。
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int n;
cin>>n;
for(int i=1; ; i++)
{
int cnt=0;
for(int j=1; j*j*2<=i; j++)
{
// 这里j*j*2<=i,乘二是一种时间优化
// 可以类比求素数时 k=sqrt(n),
// “中间”之后的部分若符合的话,
// “中间”之前必有与它相匹配的
// 所以只需根据题意判断
// “中间”前后部分运算量较少的那一部分
int k = i-j*j;
int t = sqrt(k);
if(t*t == k) cnt++;
}
if(cnt==n)
{
cout<<i<<endl;
break;
}
}
return 0;
}