题意:给你n个区间,每个区间权值为1,在如下规则下求权值和:若一个区间能完全被另一个区间覆盖(端点不重合),则这个区间的权值不计入总和。
题解:我们首先讲端点对按照右端点优先升序排列,右端点相同,按左端点升序排列,然后我们顺序对左端点进行处理,先建个空vector,对每个左端点,若在vector中能找到比它大的,则说明它可以把比它大的左端点包含在其内,则消去那个点,将当前点替换那个点的位置,若找不到,则将当前点入vector。那么,我们是如何保证正确性的呢,因为之前已经按照右端点优先升序排列,也就是说,我们按顺序处理的左端点l[i]所匹配的右端点r[i],总是小于或等于l[i+1]所对应的r[i+1],即先处理的区间的右端总能被包含在下一个区间的右端之内,这样我们对左端点处理就不会受右端点的影响。讲的不清楚,画画图就明白了。。
#include<bits/stdc++.h>
#define MEM(a,x) memset(a,x,sizeof(a));
#define MEMINF(a) memset(a,0x3f,sizeof(a));
using namespace std;
typedef long long LL;
const int MAXN=205;
const int INF=0x3f3f3f3f;
const int MOD=1000000007;
typedef pair<int,int> PAIR;
vector<PAIR >num;
vector<int>limit;
bool cmp (PAIR a,PAIR b) {
if (a.second==b.second) return a.first<b.first;
return a.second<b.second;
}
int main() {
int T;
int n;
cin>>T;
for (int cas=1; cas<=T; ++cas) {
printf("Case %d: ",cas);
num.clear();
limit.clear();
int u,v;
cin>>n;
for (int i=0; i<n; ++i) {
scanf("%d %d",&u,&v);
num.push_back(make_pair(u,v));
}
sort(num.begin(),num.end(),cmp);
/*for (int i=0; i<num.size(); ++i) {
printf("%d %d\n",num[i].first,num[i].second);
}*/
for (auto ni=num.begin(); ni!=num.end(); ni++) {
auto find=lower_bound(limit.begin(),limit.end(),ni->first+1);
if (find==limit.end()) limit.push_back(ni->first);
else {
*find=ni->first;
}
}
cout<<(int)limit.size()<<endl;
}
}