第六题:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
分析:这个题看似简单,但是会出现数组元素重复的情况,用二分查找比较便捷;
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int low = 0;
int hight = rotateArray.size()-1;
while(low < hight)
{
int mid = low + (hight-low)/2;
if(rotateArray[mid] > rotateArray[hight])
low = mid + 1;
else if(rotateArray[mid] == rotateArray[hight])
{
if(rotateArray[hight] < rotateArray[hight-1])
return rotateArray[hight];
else
hight = hight - 1;
}
else
{
hight = mid;
}
}
return rotateArray[low];
}
};
第七题:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。
n<=39
分析:斐波那契问题,记清楚斐波那契数列的性质,f(n) = f(n-1) + f(n-2)即可。一般有关斐波那契问题尽量不要写递归,斐波那契数列递归的空间复杂度非常大,很容易超出内存限制
//循环写法
class Solution {
public:
int Fibonacci(int n) {
int a = 0;
int b = 1;
while(n--)
{
a += b;
b = a - b;
}
return a;
}
};
第八题:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
分析:这同样是一个斐波那契问题,但是又与斐波那契有所不同;
斐波那契数列:112358
此题中为:12358
会直接省略掉其中一个1
//青蛙跳台阶:与斐波那契数列数列有所不同,因为斐波那契数列的第一项和第二项是1,1,他是从0开始加起来的;而这里的数列其实是1,2
//递归写法
class Solution {
public:
int jumpFloor(int number) {
if(number <= 0)
return -1;
if(number == 1)
return 1;
else if(number == 2)
return 2;
else
return (jumpFloor(number-1) + jumpFloor(number-2));
}
};
//迭代写法
class Solution {
public:
int jumpFloor(int number){
//这里控制a和b谁为1很重要,如果b为1,则需要多进行一次运算,和题目就不相符了
int a = 1;
int b = 0;
while(number--)
{
a += b;
b = a-b;
}
return a;
}
};
第九题:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:
1级,f(1) = 1
2级,f(2) = f(2-1) + f(2-2)
3级,f(3) = f(3-1) + f(3-2) + f(3-3)
...
n级,f(n) = f(n-1) + f(n-2) + f(n-3) +...+f(n - (n-1)) + f(n - n) ==> f(0) + f(1) + f(2) + ... + f(n-1)
f(n-1) = f(0) + f(1) + f(2) + ... + f(n-2)
f(n) = f(n - 1) + f(n - 1) = 2 * f(n - 1) = 2^n*f(1)
//循环
class Solution {
public:
int jumpFloorII(int number) {
if(number == 1)
return 1;
int a = 1;
while(number > 1)
{
a = a*2;
number--;
}
return a;
}
};
//递归
//很多情景下会超出内存限制
class Solution {
public:
int jumpFloorII(int number) {
if(number == 1)
return 1;
return(2*jumpFloorII(number--));
}
};
第十题:我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
分析:同样是斐波那契数列,同第八题一致
//矩形覆盖
//递归
class Solution {
public:
int rectCover(int number) {
if(number == 1)
return 1;
if(number == 2)
return 2;
return (rectCover(number-1) + rectCover(number-2));
}
};
//循环
class Solution {
public:
int rectCover(int number) {
if(number == 0)
return 0;
int a = 1;
int b = 0;
while(number--)
{
a += b;
b = a - b;
}
return a;
}
};