剑指offer真题6--10

第六题:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。

分析:这个题看似简单,但是会出现数组元素重复的情况,用二分查找比较便捷;

class Solution {
public:
    int minNumberInRotateArray(vector<int> rotateArray) {
        int low = 0;
        int hight = rotateArray.size()-1;
        while(low < hight)
        {
            int mid = low + (hight-low)/2;
            if(rotateArray[mid] > rotateArray[hight])
                low = mid + 1;
            else if(rotateArray[mid] == rotateArray[hight])
            {
                if(rotateArray[hight] < rotateArray[hight-1])
                    return rotateArray[hight];
                else
                    hight = hight - 1;
            }
            else
            {
                hight = mid;
            }
        }
        return rotateArray[low];
    }
};

第七题:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。

n<=39

分析:斐波那契问题,记清楚斐波那契数列的性质,f(n) = f(n-1) + f(n-2)即可。一般有关斐波那契问题尽量不要写递归,斐波那契数列递归的空间复杂度非常大,很容易超出内存限制

//循环写法
class Solution {
public:
    int Fibonacci(int n) {
        int a = 0;
        int b = 1;
        while(n--)
        {
            a += b; 
            b = a - b;
        }
        return a;
    }
};

第八题:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

分析:这同样是一个斐波那契问题,但是又与斐波那契有所不同;

斐波那契数列:112358

此题中为:12358

会直接省略掉其中一个1

//青蛙跳台阶:与斐波那契数列数列有所不同,因为斐波那契数列的第一项和第二项是1,1,他是从0开始加起来的;而这里的数列其实是1,2
//递归写法
class Solution {
public:
    int jumpFloor(int number) {
        if(number <= 0)
            return -1;
        if(number == 1)
            return 1;
        else if(number == 2)
            return 2;
        else
            return (jumpFloor(number-1) + jumpFloor(number-2));
    }
};
//迭代写法
class Solution {
public:
    int jumpFloor(int number){
	//这里控制a和b谁为1很重要,如果b为1,则需要多进行一次运算,和题目就不相符了
        int a = 1;
        int b = 0;
        while(number--)
        {
            a += b;
            b = a-b;
        }
        return a;
    }
};

第九题:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

分析:

1级,f(1) = 1

2级,f(2) = f(2-1) + f(2-2)

3级,f(3) = f(3-1) + f(3-2) + f(3-3)

...

n级,f(n) = f(n-1) + f(n-2) + f(n-3) +...+f(n - (n-1)) + f(n - n) ==> f(0) + f(1) + f(2) + ... + f(n-1)

f(n-1) = f(0) + f(1) + f(2) + ... + f(n-2)

f(n) = f(n - 1) + f(n - 1) = 2 * f(n - 1) = 2^n*f(1)

//循环
class Solution {
public:
    int jumpFloorII(int number) {
        if(number == 1)
            return 1;
        int a = 1;
            while(number > 1)
            {
                a = a*2;
                number--;
            }
        return a;
    }
};
//递归
//很多情景下会超出内存限制
class Solution {
public:
    int jumpFloorII(int number) {
        if(number == 1)
            return 1;
        return(2*jumpFloorII(number--));
    }
};

第十题:我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

分析:同样是斐波那契数列,同第八题一致

//矩形覆盖
//递归
class Solution {
public:
    int rectCover(int number) {
        if(number == 1)
            return 1;
        if(number == 2)
            return 2;
        return (rectCover(number-1) + rectCover(number-2));
    }
};
//循环
class Solution {
public:
    int rectCover(int number) {
        if(number == 0)
            return 0;
        int a = 1;
        int b = 0;
        while(number--)
        {
            a += b;
            b = a - b;
        }
        return a;
    }
};

 

【基于Python的大麦网自动抢票工具的设计与实现】 随着互联网技术的发展,网络购票已经成为人们生活中不可或缺的一部分。尤其是在文化娱乐领域,如音乐会、演唱会、戏剧等活动中,热门演出的门票往往在开售后瞬间就被抢购一空。为了解决这个问题,本论文探讨了一种基于Python的自动抢票工具的设计与实现,旨在高购票的成功率,减轻用户手动抢票的压力。 Python作为一种高级编程语言,因其简洁明了的语法和丰富的第三方库,成为了开发自动化工具的理想选择。Python的特性使得开发过程高效且易于维护。本论文深入介绍了Python语言的基础知识,包括数据类型、控制结构、函数以及模块化编程思想,这些都是构建抢票工具的基础。 自动化工具在现代社会中广泛应用,尤其在网络爬虫、自动化测试等领域。在抢票工具的设计中,主要利用了自动化工具的模拟用户行为、数据解析和定时任务等功能。本论文详细阐述了如何使用Python中的Selenium库来模拟浏览器操作,通过识别网页元素、触发事件,实现对大麦网购票流程的自动化控制。同时,还讨论了BeautifulSoup和requests库在抓取和解析网页数据中的应用。 大麦网作为国内知名的票务平台,其网站结构和购票流程对于抢票工具的实现至关重要。论文中介绍了大麦网的基本情况,包括其业务模式、用户界面特点以及购票流程,为工具的设计供了实际背景。 在系统需求分析部分,功能需求主要集中在自动登录、监控余票、自动下单和异常处理等方面。抢票工具需要能够自动填充用户信息,实时监控目标演出的票务状态,并在有票时立即下单。此外,为了应对可能出现的网络延迟或服务器错误,工具还需要具备一定的错误恢复能力。性能需求则关注工具的响应速度和稳定性,要求在大量用户同时使用时仍能保持高效运行。 在系统设计阶段,论文详细描述了整体架构,包括前端用户界面、后端逻辑处理以及与大麦网交互的部分。在实现过程中,采用了多线程技术以高并发性,确保在抢票关键环节的快速响应。此外,还引入了异常处理机制,以应对网络故障或程序错误。 测试与优化是确保抢票工具质量的关键步骤。论文中到了不同场景下的测试策略,如压力测试、功能测试和性能测试,以验证工具的有效性和稳定性。同时,通过对抢票算法的不断优化,高工具的成功率。 论文讨论了该工具可能带来的社会影响,包括对消费者体验的改善、对黄牛现象的抑制以及可能引发的公平性问题。此外,还出了未来的研究方向,如增加多平台支持、优化抢票策略以及考虑云服务的集成,以进一步升抢票工具的实用性。 本论文全面介绍了基于Python的大麦网自动抢票工具的设计与实现,从理论到实践,从需求分析到系统优化,为读者供了一个完整的开发案例,对于学习Python编程、自动化工具设计以及理解网络购票市场的运作具有重要的参考价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值