1.修改数组,找出重复的数字
在一个长度为n的数组里的所有数字都在0到n-1的范围内。数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。例如,如果输入长度为7的数组{2, 3, 1, 0, 2, 5, 3},那么对应的输出是重复的数字2或者3。
<1>用哈希表,从头到尾顺序扫描数组每个数字,每扫描到一个数字时,用O(1)的时间来判断哈希表里是否含有该数字,如果哈希表里还没有这个数字,就加入哈希表,如果哈希表已经存在该数字,就找到一个重复的数字。该算法的时间复杂度为O(n),但是空间复杂度是O(n),以一个大小为O(n)的哈希表作为代价。
<2>迭代使用
#include <cstdio>
//numbers 一个整数数组
//length 数组的长度
//duplication (输出)数组中的一个重复数字
//true - 输入有效,而且数组中存在重复的数字
//false - 输入无效,或者数组中没有重复的数字
bool duplication(int numbers[], int length, int* duplication)
{
if(numbers == nullptr || length <= 0)
return false;
for (int i = 0; i < length; ++i)
{
if (numbers[i] < 0 || numbers[i] > length - 1)
return false;
}
for (int i = 0; i < length; ++i)
{
while (numbers[i] != i)
{
if (numbers[i] == numbers[numbers[i]])
{
*duplication = numbers[i];
return true;
}
int temp = numbers[i];
numbers[i] = numbers[temp];
numbers[temp] = temp;
}
}
return false;
}
时空复杂度分析:
尽管有二重循环,但每个数字最多只要交换两次就可以找到属于它自己的位置,因此总的时间复杂度是O(n),所有操作都是在原来输入数组上操作,不需要额外分配内存,因此空间复杂度为O(1)。
2.不修改数组找到重复的数字
在一个长度为n+1的数组里的所有数字都在1到n的范围内,所以数组中至少有一个数字是重复的。请找出数组中任意一个重复的数字,但不能修改输入的数组。例如,如果输入长度为8的数组{2, 3, 5, 4, 3, 2, 6, 7},那么对应的输出是重复的数字2或者3。
<1>可以创建一个长度为n+1大小的数组,数字为m,则复制到辅助数组下标为m的位置中,这样可以发现哪个数字是重复的,但是需要O(n)的辅助空间
<2>用时间换空间
#include <iostream>
int countRange(const int * numbers, int length, int start, int end);
//numbers:一个整数数组
//length:数组的长度
//正数 - 输入有效,并且数组中存在重复的数字,返回值为重复的数字
//负数 - 输入无效,或者数组中没有重复的数字
int getDuplication(const int * numbers, int length)
{
if (numbers == nullptr || length <= 0)
return -1;
int start = 1;
int end = length - 1;
while (end >= start)
{
int middle = ((end - start) >> 1) + start;
int count = countRange(numbers, length, start, middle);
if (end == start)
{
if (count > 1)
return start;
else
break;
}
if (count > (middle - start + 1))
end = middle;
else
start = middle + 1;
}
return -1;
}
//countRange()是用来统计在区间[start, end]内的数字有多少个
int countRange(const int * numbers, int length, int start, int end)
{
if (numbers == nullptr)
return 0;
int count = 0;
for (int i = 0; i < length; i++)
if (numbers[i] >= start && numbers[i] <= end)
count++;
return count;
}
上述代码按照二分查找的思路,如果输入长度为n的数组,那么函数countRange将被调用O(logn)次,每次需要O(n)的时间,因此总的时间复杂度为O(nlogn),空间复杂度为O(1),相当于以时间换空间。但是需要注意的一点是,这种算法不能保证找出所有重复的数字。