引言
近日,2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况。这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却颁发给了研究计算机的人!相信许多人在感到疑惑的同时,对机器学习和神经网络也产生了浓厚的兴趣
人物介绍
让我们来认识一下这两位牛人:
John J. Hopfield(约翰·霍普菲尔德)
图源:Denise Applewhite / Princeton University via AFP - Getty Images
第一位:约翰·霍普菲尔德,被称为现代神经网络的先驱,他的研究强化了我们对神经元如何集体工作以及这些网络如何可以模拟人类大脑功能的理解。但是他的学术之路可以说是非常独特,他最初是一位物理学家,专攻固体物理学,特别是对材料中的电子行为感兴趣。然而,霍普菲尔德并没有局限于自己的领域。他被大脑工作机制所吸引,试图通过物理学的视角来理解神经元之间的相互作用。他的跨学科背景使他能够将统计物理学中的能量最小化原理应用到神经网络的模型中,最终在1982年提出了著名的霍普菲尔德网络(Hopfield Network)。
图源:瑞典皇家科学院
Hopfield神经网络是一种特殊的反馈神经网络,具有记忆和联想的功能。它通过将神经元的输出反馈回其输入来实现这些功能。HNN中的每个神经元都接收来自其他神经元的输入,并将自己的输出发送回其他神经元。这种反馈机制使得HNN能够存储和检索特定的状态,类似于计算机的内存。霍普菲尔德网络的提出推动了神经网络领域的发展,尤其是在理解记忆如何在大脑中存储和检索的机制上提供了理论框架。 且它的“能量最小化”思想影响了后续许多神经网络模型的发展。 霍普菲尔德网络被广泛应用于神经科学、 计算机 科学和优化问题等领域,尤其是在模式识别、联想记忆和优化算法方面发挥了重要作用,在推动现代人工智能和神经计算理论的发展上起到了关键作用。
Geoffrey E. Hinton(杰弗里·辛顿)
图源: Fortune
第二位:杰弗里·辛顿,2018年图灵奖得主,Hinton出生于科学家家庭,他的父亲是英国皇家学会会员,他的曾祖父是逻辑学家乔治·布尔(George Boole),布尔代数的创始人。这种家族背景对辛顿的数学思维产生了深远影响。然而Hinton的成长之路并不是一帆风顺,在找到自己的学术方向之前,他甚至还在伦敦做过一年木匠。但是在确定了自己的学术方向后,辛顿的职业生涯可以说是充满了对人工智能与神经科学交汇点的执着追求。他从一开始就相信,大脑的工作机制可以通过计算模型进行模拟,但这一观点在当时的主流计算机科学界并不被广泛接受。但他并未放弃该研究,直到与合作者在1986年发表的两篇具有里程碑意义的论文中推广了被称为“”的算法,这个术语反映了一个阶段,在这个阶段中,算法通过神经元反向传播网络猜测产生的误差测量,从直接连接到输出的神经元开始,这使得在输入层和输出层之间具有中间“隐藏”神经元的网络能够有效地学习,克服了Minsky和Papert指出的局限性,它支撑着如今几乎所有的神经网络,从计算机视觉系统到大型语言模型。在人工智能领域,他的学生和同事们都称他为“一位真正的开拓者”,辛顿本人则保持谦逊,常常称自己只是“热衷于理解大脑的工作方式”。
图源:百度百科
机器学习、神经网络与物理学的联系(浅谈)
机器学习与神经网络的物理学基础
-
统计物理与机器学习:统计物理研究系统的宏观行为与微观组成之间的关系,而机器学习也追求从数据中发现规律和模式。统计物理的概念和方法可应用于机器学习中,例如聚类、降维和图像识别等。通过结合统计物理和机器学习的思想,可以提高模型的泛化能力和鲁棒性。
-
信息论与数据处理:信息论提供了对信息量和不确定性的度量,而熵则是信息量和不确定性的度量指标。这些概念为AI中的数据处理和决策问题提供了理论基础,如数据压缩、特征提取和模型选择等。通过理解信息论和熵的原理,可以优化AI算法的效率和准确性。
-
神经网络与物理原理:神经网络模拟了大脑神经元之间的相互作用,而复杂系统理论提供了对非线性动力学和网络结构的理解。这种交叉探索促进了神经网络模型的演进和改进,使其在模式识别、预测和优化等任务中取得了突破性进展。此外,人工神经网络的学习过程与物理学中的统计力学和热力学有着密切的联系,如通过优化算法调整神经元连接权重的过程可以类比为物理系统中的能量最小化过程。
物理学在机器学习中的应用
-
物理模拟与预测:物理模拟是理解复杂系统行为的重要手段,而AI技术可以提供更准确和高效的模拟方法。通过机器学习算法,可以建立物理模型和仿真环境,从而更好地预测系统的演化和响应。这在天气预报、材料设计和宇宙模拟等领域具有重要意义。
-
优化问题:物理系统中的优化问题常常涉及多个变量和约束条件,AI算法的优化能力成为解决此类问题的有效手段。通过使用强化学习、遗传算法和优化算法等技术,可以对复杂的物理系统进行控制和优化,如无人驾驶车辆的路径规划和能源系统的优化管理。
跨学科研究的相互促进
物理学和AI之间的交叉研究需要跨学科的合作和知识共享。物理学家可以借鉴AI的思想和技术来处理大规模数据和复杂系统,而AI专家则可以从物理学中获取直观的建模和问题解决方法。这种合作将推动两个领域的相互促进和共同发展,带来更多创新和突破。可以对科学界和社会产生深远的影响和贡献。
诺奖背后,是人工智能的崛起
人工智能:生活方式的重塑者
在人工智能的浪潮中,我们生活的每一个角落都在悄然发生着变化。从智能家居到自动驾驶汽车,从智能医疗到金融科技,人工智能正以不可阻挡之势渗透到我们生活的方方面面。
在家庭中,智能家居系统已经变得越来越普及。通过语音助手,我们可以轻松控制家中的灯光、温度、音乐等设备,甚至可以通过智能冰箱了解食物存储情况,合理安排饮食。这些看似简单的功能,却极大地提升了我们的生活质量,让我们享受到更加便捷、舒适的生活体验。
在交通领域,自动驾驶汽车的发展更是令人瞩目。通过高精度的传感器和先进的算法,自动驾驶汽车能够实时感知周围环境,自主做出驾驶决策,从而极大地提高了道路安全性和交通效率。未来,随着技术的不断完善和政策的逐步放开,自动驾驶汽车有望成为我们日常出行的主要选择。
在医疗领域,人工智能的应用更是为患者带来了福音。通过深度学习等技术,人工智能能够辅助医生进行疾病诊断、制定治疗方案,甚至预测疾病发展。这不仅提高了医疗服务的准确性和效率,更为患者提供了更加个性化、精准的治疗方案。
在金融领域,人工智能的应用同样广泛。从智能投顾到风险防控,从客户服务到交易执行,人工智能正在重塑金融行业的生态格局。通过大数据分析和机器学习算法,金融机构能够更准确地评估客户风险、优化投资策略,从而为客户提供更加安全、高效的金融服务。
人工智能:社会发展的催化剂
除了对个人生活方式的深刻改变外,人工智能还在推动着社会的整体进步和发展。在教育领域,人工智能能够为学生提供个性化的学习资源和辅导服务,帮助他们更好地掌握知识和技能;在环保领域,人工智能能够实时监测环境污染情况,为环境保护提供有力支持;在公共安全领域,人工智能能够协助警方进行犯罪预防和打击,维护社会稳定和安全
对未来的展望与想象
展望未来,人工智能的潜力似乎无穷无尽。我们可以想象,随着技术的不断进步,人工智能将更深入地融入我们的日常生活,成为我们不可或缺的伙伴。也许在不远的将来,我们也能见证一个人工智能更加繁荣发展的盛世诞生,到时候说不准计算机这个行业的还能出几位其他类型的诺奖得主呢!
讨论交流
以上均为我的个人拙见,欢迎大家在评论区进行交流讨论