HDU 3893

题意:给一串长度为N的小方格上色,一共有六种颜色分别是 red, orange, yellow, green, blue, violet。要求 1.左右两边颜色对称 2.相邻的小方格颜色不同 3.连续的六个小方格的颜色不能依次是 red, orange, yellow, green, blue, violet,求一共有多少种上色方法。(N<=10^9)

解法:
    如果N为偶数,不可能满足条件。因为如果N为偶数,要满足第一个条件,中间两个格子颜色必然相同,这会导致不能满足第二个条件。
    如果N为奇数,我们只需要考虑前面(N+1)/2个格子的着色方法数,后面的格子因为要和前面的格子对称,所以不需要考虑。
    我们假设六种颜色代号分别是 012345,因为有第三个条件,所以前面(N+1)/2个格子颜色不能出现 012345 序列,由于对称也不能出现 543210 序列。
定12个状态,分别为 [],[0],[5],[01],[54],[012],[543],[0123],[5432],[01234],[54321],[------]。
状态转移矩阵为:
    3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 0,
    1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
    1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,
    0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5

#include <stdio.h>
#include <memory.h>

const __int64 mod = 112233;

__int64 init_mtx[12][12] = {
    3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 0,
    1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
    1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0,
    0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5
};
__int64 init_cunt[12] = {
    4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

__int64 mtx1[12][12], mtx2[12][12], mtx3[12][12];

void mul(__int64 mtxa[12][12], __int64 mtxb[12][12]) {
    int i, j, k;

    for (i = 0; i < 12; i++) {
        for (j = 0; j < 12; j++) {
            mtx3[i][j] = 0;
            for (k = 0; k < 12; k++)
                mtx3[i][j] += mtxa[i][k] * mtxb[k][j];
            mtx3[i][j] %= mod;
        }
    }
    memcpy(mtxa, mtx3, sizeof(mtx3));
}

void solve(int m) {
    int i, j;

    memset(mtx1, 0, sizeof(mtx1));
    for (i = 0; i < 12; i++)
        mtx1[i][i] = 1;
    memcpy(mtx2, init_mtx, sizeof(mtx2));
    
    while (m) {
        if (m & 1)
            mul(mtx1, mtx2);
        mul(mtx2, mtx2);
        m >>= 1;
    }

    long long ans = 0;
    for (i = 0; i < 11; i++)
        for (j = 0; j < 11; j++)
            ans += mtx1[i][j] * init_cunt[j];
    printf("%I64d\n", ans % mod);
}

int main() {
    int n;
    while (scanf("%d", &n) != EOF) {
        if (n % 2 == 0) printf("0\n");
        else solve(n / 2);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值