- 博客(3)
- 收藏
- 关注
原创 SSD-Pytorch超详细教程
这里写自定义目录标题SSD-Pytorch超详细教程数据集制作VOC2007数据格式生成txt代码环境配置代码更改SSD-Pytorch超详细教程我们使用的是https://github.com/amdegroot/ssd.pytorch该开源代码。数据集制作该代码支持两种数据格式,VOC和COCO。我们使用的是VOC。VOC2007数据格式VOC2007里包含上述几个文件夹。Annotations里包含所有图片的xml文件。jpegimages里面包含所有的图片。imagesets里面
2021-07-16 10:33:57 2256
原创 图像滤波
图像实质上是一种二维信号。1、线性滤波:对邻域中的像素的计算为线性运算。例如,均值滤波,高斯滤波,拉普拉斯滤波。通常线性滤波器之间只是模板的系数不同。2、非线性滤波:非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,**中值滤波器。**比较常用的有中值滤波器和双边滤波器。两种常见噪声skimage.util.random_noise(image, mode, seed=None, clip=True, **kwargs)参数:image 为输入图像数据,类型为ndarray,
2020-07-06 09:18:25 1928
原创 2020集成学习面试问题总结
1、集成学习分哪几种,有何异同。Boosting:训练基分类器时采用串行的方式,强依赖。对于错误分类的样本给与更高的权重。线性加权得到强分类器。减少偏差。Bagging:并行训练,弱依赖。每个个体单独判断,投票做出最后的决策。减少方差。RF每次选取节点分裂属性时,会随机抽取一个个属性子集。2、偏差和方差偏差,偏离程度。训练开始时,拟合差,偏差大。方差,离散程度。敏感程度。3、为什么说bagging是减少variance,而boosting是减少bias?boosting是把许多弱的分类器组合
2020-07-01 15:08:55 817
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人