思路:
1.既然是选四根火柴组成正三角形,那么一定是a、b、a+b、a+b
2.一开始的想法就是,直接sort排序,然后遍历,如果后面那个数与前面的相同(目的是找出两根相同长度的火柴,即a+b),就往前找a、b,依次进行++。虽然可以过样例,但是实际操作起来很麻烦,很容易算错且复杂度为O(n³),由于题目给定的数据范围所以显然tle
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
int n,a[11111],ans[111];
int cnt=0;
void search(int m,int l)
{
for(int i=1;i<m;i++)
{
for(int j=i+1;j<m;j++)
{
if(a[i]+a[j]==l) cnt++;
}
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)
{
if(a[i]==a[i+1])
{
search(i,a[i]);
}
}
cout<<cnt<<endl;
return 0;
}
3.新思路:
从排列组合的角度上来说,存下每个数字的数量,可以节约时间,直接c(m,n)套公式就行,至于a、b的情况在有数组的情况下也会方便得多,可以利用简单的四则运算算出所需要的答案。
如果i的数量大于等于2的话,取的方法次数为也就是c(num[i],2)
如果j=i-j的话判断j的数量是不是大于二,取的方法次数为是c(num[j],2)
如果j!=i-j就判断num[j]和num[i-j]是不是大于1,然后次数为他们的个数即num[j],num[i-j]
时间复杂度为O(n²/2)
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
long long n,maxx,ans,ans1,ans2;
long long a[111111],num[111111];
const int mod=1e9+7;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
num[a[i]]++;
maxx=max(maxx,a[i]);
}
ans=0;
for(int i=2;i<=maxx;i++)
{
if(num[i]<2) continue;
else
{
ans1=num[i]*(num[i]-1)/2;//cout<<ans<<endl;
for(int j=1;j<=i/2;j++)
{
if(j==i-j&&num[j]>=2)
{
ans2=num[j]*(num[j]-1)/2;//cout<<j<<" "<<ans<<endl;
ans+=(ans1*ans2);//cout<<"asd "<<ans<<endl;
}
if(num[j]>=1&&num[i-j]>=1&&j!=i-j) ans+=ans1*num[j]*num[i-j];
}
}
}
cout<<ans%mod<<endl;
return 0;
}