约瑟夫环

据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。

这个故事在数学的应用问题:已知有n个人,编号为1到n,围坐在一张圆桌周围,从第k个人开始报数(从1开始报),将数到m的人剔除出去,接下来的下一个人重新从1开始报数,如此反复进行,问最后一个被剔除的人是谁?

我们对n个人从0开始编号,即0~n-1,报数为m-1的剔除

假设n=9,m=3
我们对每一个人进行编号
9个人:1 2 3 4 5 6 7 8 9
编号: 0 1 2 3 4 5 6 7 8
第一次剔除3号,剩下的8个人重新编号如下:
4 5 6 7 8 9 1 2 
0 1 2 3 4 5 6 7 

n=2,m=3(即有2个人,报数到3–1的人出列)时,循环报数最后一个出列的人的编号为1,如下图所示,当编号为0、1的两个人循环报数时,编号为0的人报的数为0和2,当报到2(m–1)时,编号0出列,最后剩下编号为1的人,所以编号为1的人最后出列。
这里写图片描述
同理,也可以推导出参与人数为N时,最后出列人员编号的公式:
这里写图片描述

由此代码如下:

//递归
#include <iostream>
using namespace std;

int josephus(int n, int m)
{
    if (n == 1)
    {
        return 0;
    }

    else
    {
        return (josephus(n-1, m) + m) % n;
    }
}

int main()
{
    int n, m;
    cin >> n >> m;
    cout<<josephus(n, m)<<endl;

    system("pause");
    return 0;
}


//非递归
#include <iostream>
using namespace std;



int main()
{
    int n, m;
    int k = 0;
    cin >> n >> m;

    for (int i = 2; i <= n; i++)
    {
        k = (k + m) % i;
    }

    cout << k << endl;
    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值