据说著名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人抓到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。然而Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
这个故事在数学的应用问题:已知有n个人,编号为1到n,围坐在一张圆桌周围,从第k个人开始报数(从1开始报),将数到m的人剔除出去,接下来的下一个人重新从1开始报数,如此反复进行,问最后一个被剔除的人是谁?
我们对n个人从0开始编号,即0~n-1,报数为m-1的剔除
假设n=9,m=3
我们对每一个人进行编号
9个人:1 2 3 4 5 6 7 8 9
编号: 0 1 2 3 4 5 6 7 8
第一次剔除3号,剩下的8个人重新编号如下:
4 5 6 7 8 9 1 2
0 1 2 3 4 5 6 7
n=2,m=3(即有2个人,报数到3–1的人出列)时,循环报数最后一个出列的人的编号为1,如下图所示,当编号为0、1的两个人循环报数时,编号为0的人报的数为0和2,当报到2(m–1)时,编号0出列,最后剩下编号为1的人,所以编号为1的人最后出列。
同理,也可以推导出参与人数为N时,最后出列人员编号的公式:
由此代码如下:
//递归
#include <iostream>
using namespace std;
int josephus(int n, int m)
{
if (n == 1)
{
return 0;
}
else
{
return (josephus(n-1, m) + m) % n;
}
}
int main()
{
int n, m;
cin >> n >> m;
cout<<josephus(n, m)<<endl;
system("pause");
return 0;
}
//非递归
#include <iostream>
using namespace std;
int main()
{
int n, m;
int k = 0;
cin >> n >> m;
for (int i = 2; i <= n; i++)
{
k = (k + m) % i;
}
cout << k << endl;
system("pause");
return 0;
}