什么样的音乐和呼噜声最配?

什么样的音乐和呼噜声最配?

在南京到北京的硬卧火车上,已经凌晨三点,我还因为对面铺位大叔的呼噜声而难以入眠,明天是工作日,我还要上班。

当时的我既没有隔音耳机,也没有耳塞,手边只有一个普通的头戴式耳机,而且这个耳机如果放大声的音乐还会漏音,我别无选择,只能找一些音乐伴着呼噜声入睡。

在寻找最适合歌曲的过程中,我发现了一些有趣的事情,便记录了下来。
这个过程中的所有曲目都可以在我的网站上试听效果。

起初,我选择了一首最近很喜欢的双吉他演奏曲目,这是一首旋律很优美的纯音乐,带着淡淡的忧伤情绪,让人心绪宁静。但是当我播放这支音乐时,呼噜声在音乐声中异常突出,熟悉的旋律中总有一个不和谐的呼噜声,让人难以忍受。

所以我的第二首歌,决定换一首更为热闹的歌曲,想盖住呼噜的声音。我选择了一首充满热情的摇滚歌曲,我刚刚听完这个乐队的现场演出,整个旅行途中一直在播放他们的歌曲。这首歌在播放时,呼噜声确实被盖住了,但是音乐声太吵闹,听的精神有点亢奋不说,听久了耳朵还有点疼痛,完全不是能伴着睡觉的音乐。

第三首歌,我决定去网上搜一搜,什么样的歌和呼噜声最配。我在网抑云上搜索关键字”呼噜“,选择歌单,点进去排名第一的歌单,选择一首,听了一下,和双吉他曲目一样的问题,呼噜声太突出了,无法和音乐融合,仍然让人无法忍受这个呼噜声。

于是我开始思考,怎样让呼噜声真正的融入到音乐中,甚至觉察不到呼噜声的存在呢?

从声音的本质上来说,声音具有响度,音调,音色三个要素,想要让呼噜声不突出,就需要让音乐的声音和呼噜声尽量接近。
响度好说,调节音乐音量大小和呼噜声音量相近就可以了。

音调就比较麻烦了,如何知道呼噜声的音调呢?
有一种工具叫做调音器,可以测出音频的高低。但是当时的情境下,我手边其实没有调音器,于是我到万能的知乎上搜索,还真让我搜到了,看这里打鼾(打呼噜)时声音的频率大概是多少?

从上面的帖子我知道了,呼噜声的频率分布较大值基本在200Hz~600H这个区间,那么这个频率范围对应的音高范围是什么呢?

找出频率和音高的对照表格:
音高和频率对照表

从上面的图可以看出,200-600hz对应的音高范围是小字组G-小2组#D,这个音高范围有多高呢?

拿出钢琴的键盘看一下

可以看到,这个音高范围属于中音区,因此我有了新的思路。

我在网易云中搜索“中低频”,找到“中低频表现”这个歌单。找到了第四首歌,试听了一下,感觉不错,比之前和谐多了。这是一首由女中音演唱的爵士风格的歌曲,歌曲的节奏较慢,和呼噜声节奏相近,而且编曲中的浑厚的号声和呼噜声极为相似,呼噜的声音仿佛成为这个歌曲的一部分,十分和谐。

最后,在第四首歌曲的单曲循环和通宵熬夜疲惫的双重作用下,我终于睡着了。

结论

与直观的感觉不同的是,和呼噜声最搭配的并不一定是呼噜歌单中那些轻柔、抒情的曲目。因为呼噜声的音调较为单一,且节奏固定,音色很像某种中音管乐器(呼噜发声的原理是空气在呼吸道内的振动,和管乐器的发声原理一样),所以中音、节奏缓慢、有管乐器编曲的曲目最合适,最能和呼噜声融为一体。

以上结论是我纯个人的感受,仅供参考,如果能够对你有所帮助是最好。但是,如果你真的被呼噜声困扰,我还是建议准备一副隔音效果好的耳塞,经济又实用。

<think>好的,用户希望设计一个DSP滤波器,先在一段信号中加入呼噜的噪音,然后通过滤波处理去除它。我需要分步骤引导他们完成整个过程。首先,用户可能对DSP滤波的基本流程不太熟悉,所以得先明确步骤:生成噪音、叠加信号、分析频谱、设计滤波器、应用滤波、验证效果。 接下来,生成噪音部分。用户可能需要知道如何生成呼噜。但实际中,呼噜可能比较复杂,包含多种频率成分。或许应该简化,用带限噪模拟,比如0.1kHz到0.3kHz的带限白噪。这样用户容易实现,用MATLAB或Python的库函数生成。需要给出示例代码,比如在Python中用numpyscipy。 然后是叠加信号。用户需要将原始信号噪音相加,这里要提醒注意信噪比的控制,比如设置SNR为10dB,这样噪音不会太大。给出具体的叠加公式代码示例,确保用户能正确操作。 频谱分析是关键步骤,用户需要确定呼噜的频率范围,以便设计滤波器。使用FFT进行分析,绘制频谱图,找出噪音的主要频率成分。这部分需要代码示例,比如用matplotlib画图。 设计滤波器时,用户可能对滤波器类型选择有疑问。由于呼噜是带限的,建议使用带阻或陷波滤波器。需要比较IIRFIR的特点,IIR阶数低但相位非线性,FIR阶数高但线性相位。对于实时处理,可能IIR更合适,但如果是离线处理,FIR更好。给出Python中使用scipy设计巴特沃斯带阻滤波器的示例,包括确定通带、阻带频率,计算阶数截止频率。 应用滤波器部分,要说明如何对叠加后的信号进行滤波,强调处理后的信号可能会有延迟,特别是FIR滤波器,需要截断或补偿。给出滤波操作的代码示例,使用lfilter函数。 后验证效果,对比频谱时域波形,计算SNR改善情况。需要指导用户如何绘制处理前后的波形频谱,以及如何计算SNR。这部分代码示例也很重要,帮助用户直观看到效果。 可能用户没有提到的深层需求是实时处理还是离线处理,这会影响滤波器设计的选择。另外,实际呼噜可能非平稳,可能需要自适应滤波,但作为入门示例,固定滤波器更简单。需要提醒用户实际应用中可能需要更复杂的方法,比如自适应滤波或谱减法,但当前示例为基础方法。 需要确保所有数学公式用$...$,独立公式用$$...$$,并检查LaTeX语法正确。比如生成噪音时的公式用$n(t)$,叠加信号时的$s(t) = x(t) + n(t)$,SNR计算公式等。确保代码示例正确,并且注释清晰,用户能直接复制使用。 后,结构要清晰,分步骤讲解,每个步骤都有原理实现,让用户逐步理解操作。可能用户是学生或初学者,所以语言要简明,避免过于专业的术语,必要时解释概念,如信噪比、带阻滤波器等。</think>好的,我将分步骤为您说明如何通过数字信号处理(DSP)实现噪添加与滤波的全过程: 一、噪添加阶段 1. 噪建模: - 呼噜可建模为$0.1\text{kHz}-0.3\text{kHz}$的带限噪 - 生成公式:$$n(t) = A \cdot \sum_{k=f_1}^{f_2} \sin(2\pi kt + \phi_k)$$ 其中$A$为幅度,$\phi_k$为随机相位 2. 信号叠加实现(Python示例): ```python import numpy as np import soundfile as sf # 读取原始信号 x, fs = sf.read('origin.wav') # 假设采样率44.1kHz # 生成带限噪 t = np.arange(len(x))/fs noise = 0.1*np.sin(2*np.pi*150*t) + 0.05*np.random.randn(len(x)) # 设置信噪比SNR=10dB x_noisy = x + noise * np.sqrt(np.mean(x**2)/(10**(10/10)*np.mean(noise**2))) ``` 二、滤波器设计阶段 1. 频谱分析: - 使用FFT确认噪主频 - 发现噪能量集中在$120\text{Hz}-180\text{Hz}$ 2. 滤波器选型对比: | 类型 | 阶数 | 相位特性 | 计算量 | 适用场景 | |---|---|---|---|---| | FIR | 高 | 线性相位 | 大 | 需要精确相位 | | IIR | 低 | 非线性 | 小 | 资源受限环境 | 3. 巴特沃斯带阻滤波器设计: ```python from scipy import signal # 设计参数 order = 6 nyq = 0.5 * fs lowcut = 120/nyq highcut = 180/nyq # 生成滤波器系数 b, a = signal.butter(order, [lowcut, highcut], btype='bandstop') ``` 三、滤波处理阶段 1. 零相位滤波实现: ```python # 双向滤波消除相位偏移 y = signal.filtfilt(b, a, x_noisy) ``` 2. 效果验证指标: - 时域波形对比 - 频谱能量分析 - SNR改善计算: $$\Delta SNR = 10\log_{10}\left(\frac{\sum x^2}{\sum (y-x)^2}\right) - 10\log_{10}\left(\frac{\sum x^2}{\sum (x_{noisy}-x)^2}\right)$$ 四、进阶优化建议 1. 自适应滤波方案:采用LMS算法实时跟踪噪变化 $$w(n+1) = w(n) + \mu e(n)x(n)$$ 其中$\mu$为步长因子,$e(n)$为误差信号 2. 时频联合处理:小波变换+阈值去噪 - 对含噪信号进行5层db4小波分解 - 对细节系数进行软阈值处理 实际工程应用中需注意: 1. 预处理:添加$20\text{Hz}$高通滤波器消除环境低频噪 2. 后处理:使用谱减法消除残留噪 3. 实时实现时需优化计算延迟,推荐使用Overlap-Add方法处理分帧数据 建议先用仿真信号验证算法,再移植到实际DSP平台(如TI C6000系列)进行实时处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值