LeetCode11. 盛最多水的容器

给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (iai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (iai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

 

思路1:

常见思路,一个指向数组的begin,一个指向数组的end,盛水的面积为begin-end 乘以 min(begin,end);因此依次分别从头和尾部遍历,双重for。

class Solution {
public:
    int maxArea(vector<int>& height) {
         if(height.size() == 0)    
            return 0;
        
        int max = 0;
        
        for(int i=0;i<height.size();i++)
            for(int j=height.size()-1;j>i;j--)
            {
                int m = height[i]>height[j]?height[j]:height[i];
                int length = j-i;
                if(max < m*length)
                    max = m*length;
            }
        
        return max;
    }
};

思路二:

思路和思路一一样,只不过强化双指针的概念,用一个while来写。下标一个指向数组的nLeft,一个指向数组的nRight,盛水的面积为nLeft-nRight乘以 min(nLeft,nRight),此时nLeft和nRight的变化规则为:当前下标nLeft和nRight所对应的高度,做比较,谁小,谁向数组里面靠近。

class Solution {
public:
    int maxArea(vector<int>& height) {
        if (height.size() < 2)
        {
            return 0;
        }
        int nLeft = 0;
        int nRight = height.size() - 1;
        int nMaxArea = 0;
        while (nLeft < nRight)
        {
            int nLeftVal = height[nLeft];
            int nRightVal = height[nRight];
            int nVal = nLeftVal < nRightVal ? nLeftVal:nRightVal;
            if (nMaxArea < nVal * (nRight - nLeft))
            {
                nMaxArea = nVal * (nRight - nLeft);
            }
            if (nLeftVal < nRightVal)
            {
                nLeft++;
            }
            else
            {
                nRight--;
            }
        }
        return nMaxArea;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值