1.数据结构(data structure):计算机存储,组织数据的方式
- 数据:程序的操作对象,用于描述客观事物
- 数据元素:组成数据的基本单位
- 数据项:一个数据元素由若干个数据项组成
- 数据对象:性质相同的数据元素的集合(数组,链表)
struct Person
{
char name[10];
int age;
};
int main(void)
{
struct Person p1;
struct Person p[30];
p1.name = {'0'};
p1.age = 0;
}
2.数据结构的三要素
数据的逻辑结构(logical structure)
- 线性结构:元素之间的关系为一对一
- 图形结构:元素之间的关系为多对多
- 树形结构:元素之间的关系为一对多
数据的存储结构(storage structure)
- 顺序存储结构:数据元素在内存中处于一段地址连续的空间(数组)
- 链式存储结构:数据元素在内存中地址不连续,通过指针实现逻辑上的连续(链表)
数据的操作(operation):数据类型允许进行的操作(完成这些操作所用的方法就是算法)
3.抽象数据类型(abstract data type)
数据类型:
- 数据对象集
- 数据集合相关联的操作集
抽象:描述数据类型的方法不依赖于具体实现
- 与存放数据的机器无关
- 与数据存储的物理结构无关
- 与实现操作的算法和编程语言无关
4.算法(algorithm)的特性
- 输入:算法具有0个或多个输入
- 输出:算法至少有1个或多个输出
- 有穷性:算法在有限的步骤之后会自动结束而不会无限循环
- 确定性:算法的每一步都有确定的含义,不会出现二义性
- 可行性:算法的每一步都能执行有限的次数完成
5.衡量算法优劣的标准
1. 正确性:算法应确切满足具体问题的需求
2. 健壮性:当输入非法数据时,算法能做出适当的处理
3. 可读性:有利于他人阅读
4. 时间复杂度(time complexity)T(n) = O(f(n)):程序在执行时所耗费时间的长度
- 大量使用循环
- 乘除法比加减法消耗的时间多
- 平时分析的一般是最坏时间复杂度
5. 空间复杂度(space complexity)S(n) = O(f(n)):程序在执行时占用存储单元的长度
- 大量递归调用函数
- 大量创建变量或对象
6.复杂度的渐进表示法
- T(n) = O(f(n)表示存在常数C>0, n[0]>0使得当n>=n[0]时有T(n) <= C * f(n) (函数的上界)
- O(1) < O(log n) < O(n) < O(nlog n) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)
- 复杂度加法法则:T1 + T2 = max(O(f1), O(f2))
- 复杂度乘法法则:T1 * T2 = O(f1 * f2)
- 一个for循环的时间复杂度等于循环次数乘以循环体代码的复杂度
- if-else结构的复杂度取决于if的条件判断复杂度和两个分支部分的复杂度,总复杂度取三者中最大
7.事后统计法
#include <stdio.h>
#include <time.h>
clock_t start, stop;
double duration;
int main(void)
{
start = clock();
stop = clock();
duration = ((double)(stop - start)) / CLK_TCK;
printf("算法所用时间为%f秒\n",duration);
return 0;
}