求面积

B - The area

Ignatius bought a land last week, but he didn't know the area of the land because the land is enclosed by a parabola and a straight line. The picture below shows the area. Now given all the intersectant points shows in the picture, can you tell Ignatius the area of the land?

Note: The point P1 in the picture is the vertex of the parabola.

 

 

Input

The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains three intersectant points which shows in the picture, they are given in the order of P1, P2, P3. Each point is described by two floating-point numbers X and Y(0.0<=X,Y<=1000.0).

Output

For each test case, you should output the area of the land, the result should be rounded to 2 decimal places.

Sample Input

2

5.000000 5.000000

0.000000 0.000000

10.000000 0.000000

10.000000 10.000000

1.000000 1.000000

14.000000 8.222222

Sample Output

33.33

40.69

 

 

        

  

Hint

For float may be not accurate enough, please use double instead of float.

 

        

 

#include<stdio.h>

#include<string.h>

int main()

{

    int N;

    scanf("%d",&N);

    while(N--)

    {

        double x1,y1,x2,y2,x3,y3;

        scanf("%lf%lf%lf%lf%lf%lf",&x1,&y1,&x2,&y2,&x3,&y3);

        double a,b,c,k,d,sum;

        k=(y3-y2)/(x3-x2);

        d=y3-k*x3;

        a=(y3-y1)/((x3-x1)*(x3-x1));

        b=-2*a*x1;

        c=y1-b*x1-a*x1*x1;

        sum=a/3*(x3*x3*x3-x2*x2*x2)+(b-k)/2*(x3*x3-x2*x2)+(c-d)*(x3-x2);

        printf("%.2lf\n",sum);

    }

    return 0;

}


数学问题。。。

          已知抛物线与直线相交两点和抛物线顶点,顶点P1(-b/(2a), (4ac-b^2)/4a)。
          抛物线方程:y=ax^2+bx+c;
          直线方程:y=kx+h;
          已知p1,p2,p3可以求出a,b,c,k,h
          y1=ax1^2+bx1+c
          y2=ax2^2+bx2+c
          y1-y2=(x1-x2)(a(x1+x2)+b)
          又x1=-b/2a,
          所以a=(y2-y1)/(x2-x1)^2
          面积用积分公式化简为:
          S=a/3*(x3^3–x2^3)+(b-k)/2*(x3^2–x2^2)+(c-h)*(x3-x2);


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值