Problem J. Master of GCD
Hakase has n numbers in a line. At first, they are all equal to 1. Besides, Hakase is interested in primes. She will choose a continuous subsequence [l,r] and a prime parameter x each time and for every l ≤ i ≤ r, she will change ai into ai ∗x. To simplify the problem, x will be 2 or 3. After m operations, Hakase wants to know what is the greatest common divisor of all the numbers.
Input The first line contains an integer T (1 ≤ T ≤ 10) representing the number of test cases. For each test case, the first line contains two integers n (1 ≤ n ≤ 100000) and m (1 ≤ m ≤ 100000), where n refers to the length of the whole sequence and m means there are m operations. Thefollowingmlines,eachlinecontainsthreeintegersli (1 ≤ li ≤ n), ri (1 ≤ ri ≤ n), xi (xi ∈{2,3}), which are referred above.
Output For each test case, print an integer in one line, representing the greatest common divisor of the sequence. Due to the answer might be very large, print the answer modulo 998244353.
Example
standard input
2
5 3
1 3 2
3 5 2
1 5 3
6 3
1 2 2
5 6 2
1 6 2
standard output
6
2
Explanation Forthefirsttestcase, afteralloperations, thenumberswillbe [6,6,12,6,6]. Sothegreatestcommon divisor is 6.
题意:有一个长度位n,值全为1的区间。进行m次操作,每次将区间[l,r]的值都乘上2或则3。最后求区间[l,r]的最大公约数。结果可能会很大,需要将答案对998244353取模。
思路:涉及到区间更新和查询问题都可以用线段树做,如果用线段树维护gcd,就有一个问题,我们需要对值进行取模,取模后的gcd发生了改变,所以不可行。仔细阅读题目,发现每次区间只能乘上2或则3。因此我们可以用线段树维护2的个数和3的个数(维护的其实是最大公约数的因子)。父亲区间的2或3的个数为儿子区间较少的2或3的个数。
最后的答案ans=pow(2,2的个数)*pow(3,3的个数);
区间更新需要用到延迟标记。
AC代码:
//线段树维护2的数目和3的数目
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN =1e5+10;
const ll MOD = 998244353;
const ll INF = 0x3f3f3f3f;
int N,M;
ll power(ll a,ll b){
ll ans=1;
a%=MOD;
while(b){
if(b&1){
ans=ans*a%MOD;
b--;
}
b>>=1;
a=a*a%MOD;
}
return ans;
}
struct node{
int l,r;
ll sum2,sum3,lazy2,lazy3;
void update(ll num2,ll num3){
sum2+=num2;
lazy2+=num2;
sum3+=num3;
lazy3+=num3;
}
}tree[MAXN*4];
ll a[MAXN];
void push_up(int x){
tree[x].sum2=min(tree[x<<1].sum2,tree[x<<1|1].sum2);
tree[x].sum3=min(tree[x<<1].sum3,tree[x<<1|1].sum3);
}
void push_down(int x){
ll lazyval2=tree[x].lazy2;
ll lazyval3=tree[x].lazy3;
if(lazyval2!=0 || lazyval3!=0){
tree[x<<1].update(lazyval2,lazyval3);
tree[x<<1|1].update(lazyval2,lazyval3);
tree[x].lazy2=0;
tree[x].lazy3=0;
}
}
void build(int x,int l,int r){
tree[x].l=l;tree[x].r=r;
tree[x].lazy2=tree[x].sum2=0;
tree[x].lazy3=tree[x].sum3=0;
if(l==r){
tree[x].sum2=0;
tree[x].sum3=0;
return ;
}
int mid=(l+r)/2;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
push_up(x);
}
void update(int x,int l,int r,ll num2,ll num3){
int L=tree[x].l,R=tree[x].r;
if(l<=L && R<=r){
tree[x].update(num2,num3);
return ;
}
push_down(x);
int mid=(L+R)/2;
if(mid>=l)
update(x<<1,l,r,num2,num3);
if(mid<r)
update(x<<1|1,l,r,num2,num3);
push_up(x);
}
void query(int x,int l,int r,ll &sum2,ll &sum3){
int L=tree[x].l,R=tree[x].r;
if(l<=L && R<=r){
sum2=min(sum2,tree[x].sum2);
sum3=min(sum3,tree[x].sum3);
return;
}
push_down(x);
int mid=(L+R)/2;
if(mid>=l)
query(x<<1,l,r,sum2,sum3);
if(mid<r)
query(x<<1|1,l,r,sum2,sum3);
}
int main(){
int T,l,r;
ll num;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&M);
build(1,1,N);
while(M--){
scanf("%d%d%lld",&l,&r,&num);
if(num==2)
update(1,l,r,1,0);
else
update(1,l,r,0,1);
}
ll num2=INF,num3=INF;
query(1,1,N,num2,num3);
ll ans=power(2,num2)*power(3,num3)%MOD;
printf("%lld\n",ans);
}
return 0;
}