动态规划中背包'装满问题'

在一些背包问题中要求会从不超过背包最大容量变为恰好装满背包,与前者的差别在于初始化的不同

合理运用INF:

把dp[maxn]全赋值为INF
dp[0]=0;
如果dp[n]>0,则在容量为n时,背包无法装满。
恰好装满的dp[n]有一个具体值,而不是INF

为什么要这么做呢?
通过画图制表可以得出,有些位置上的值并不是从dp[0]位置推到出来的,有可能其末尾最后dp[N]就不是推导出来的,所以在那个状态下他并没有塞满,所以他仍然是INF

memset(dp,INF,sizeof(dp));
dp[0]=0;

当不需要背包恰好装满时:dp数组初始化的值全为0。

例题:HDU1114 这个就是一个完全背包求是否恰好装满情况的题

#include<iostream>
#include<algorithm>
#include<string>
#define MAX_N 502
#define MAX_W 10002
#define INF (1 << 20)
using namespace std;
int dp[MAX_W], w[MAX_N], v[MAX_N];
int W;
int main()
{
    int T, E, F, N;
    cin >> T;
    while (T--){
        cin >> E >> F;
        W = F - E;
        cin >> N;
        for (int i = 0; i < N; i++){
            cin >> v[i] >> w[i];
        }
        dp[0] = 0;
        for (int i = 1; i <= W; i++){
            dp[i] = INF;   //这里全部初始化INF 除了最开始的dp[0]位置
        }
        for (int i = 0; i < N; i++){
            for (int j = w[i]; j <= W; j++){
                dp[j] = min(dp[j], dp[j - w[i]] + v[i]);
            }
        }
        if (dp[W] < INF){
            cout << "The minimum amount of money in the piggy-bank is " << dp[W] <<"."<< endl;
        }
        else{
            cout << "This is impossible." << endl;
        }
    }
    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值