在一些背包问题中要求会从不超过背包最大容量变为恰好装满背包,与前者的差别在于初始化的不同
合理运用INF:
把dp[maxn]全赋值为INF
dp[0]=0;
如果dp[n]>0,则在容量为n时,背包无法装满。
恰好装满的dp[n]有一个具体值,而不是INF
为什么要这么做呢?
通过画图制表可以得出,有些位置上的值并不是从dp[0]位置推到出来的,有可能其末尾最后dp[N]就不是推导出来的,所以在那个状态下他并没有塞满,所以他仍然是INF
memset(dp,INF,sizeof(dp));
dp[0]=0;
当不需要背包恰好装满时:dp数组初始化的值全为0。
例题:HDU1114 这个就是一个完全背包求是否恰好装满情况的题
#include<iostream>
#include<algorithm>
#include<string>
#define MAX_N 502
#define MAX_W 10002
#define INF (1 << 20)
using namespace std;
int dp[MAX_W], w[MAX_N], v[MAX_N];
int W;
int main()
{
int T, E, F, N;
cin >> T;
while (T--){
cin >> E >> F;
W = F - E;
cin >> N;
for (int i = 0; i < N; i++){
cin >> v[i] >> w[i];
}
dp[0] = 0;
for (int i = 1; i <= W; i++){
dp[i] = INF; //这里全部初始化INF 除了最开始的dp[0]位置
}
for (int i = 0; i < N; i++){
for (int j = w[i]; j <= W; j++){
dp[j] = min(dp[j], dp[j - w[i]] + v[i]);
}
}
if (dp[W] < INF){
cout << "The minimum amount of money in the piggy-bank is " << dp[W] <<"."<< endl;
}
else{
cout << "This is impossible." << endl;
}
}
system("pause");
return 0;
}