【数据结构】ST表

本文介绍了如何使用ST表(Segment Tree)解决区间最大值查询的问题。通过给出的洛谷P3865题目,阐述了暴力求解会超时的原因,并详细讲解了ST表的预处理及查询过程,提供了一种高效的解决方案。
摘要由CSDN通过智能技术生成

题目链接,洛谷P3865
https://www.luogu.com.cn/problem/P3865

题目大意:给定 n个数,有 q个询问,对于每个询问,你需要回答区间 中的最大值。

考虑暴力做法。每次都对区间 扫描一遍,求出最大值。显然,这个算法会超时。

ST表用于处理RMQ问题,处理区间最大最小值,但是因为直接暴力去扫容易TLE,所以预处理会很好,ST表示基于O(nlogn)复杂度来写的

模板代码:

#include<iostream>
#define ll long long
#define endl '\n'
#define IO ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
const int maxn=1e5+5;
const int lgn=19;

int n,q;
int lg[maxn],f[maxn][19],F[maxn][19];

void init(){
	lg[1]=0,lg[2]=1;
	for(int i=3;i<maxn;i++){
		lg[i]=lg[i>>1]+1;
	}
}

void st(){
	for(int j=1;j<=19;j++){
		for(int i=0;i+(1<<j)-1<n;i++){
			f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
		}
	}
}

int Q(int l,int r){
	int len=lg[r-l+1];
	return max(f[l][len],f[r-(1<<len)+1][len]);
}

int main(){
	IO;
	init();
	cin>>n>>q;
	for(int i=0;i<n;i++){
		cin>>f[i][0];
	}
	st();
	while(q--){
		int l,r;cin>>l>>r;
		--l,--r;
		cout<<Q(l,r)<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值