Raki的统计学习方法笔记0x9章:EM算法及其推广

之前对EM一直没有一个直观的理解,只知道可以用来求解含隐变量的参数估计,但是一直不懂Q函数是什么,E步M步是什么,为什么这样,昨天在知乎上看了几篇EM的blog,对EM的理解有了很大的进步,算是入了个门

首先我们要清楚一点,EM不是一个具体的模型而是一种算法

EM 算法的核心思想非常简单,分为两步:Expection-Step 和 Maximization-Step。
E-Step 主要通过观察数据和现有模型来估计参数,然后用这个估计的参数值来计算似然函数的期望值;
M-Step 是寻找似然函数最大化时对应的参数。由于算法会保证在每次迭代之后似然函数都会增加,所以函数最终会收敛。

这篇blog我不打算写太多的公式上来,因为大佬们写的已经够好了,看他们的就够了,我只想记录一下几个关键点

Q函数
Q ( θ , θ ( i ) ) = E Z [ log ⁡ P ( Y , Z ∣ θ ) [ Y , θ ( i ) ] ] = ∑ Z log ⁡ P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) \begin{aligned} Q(\theta,\theta^{(i)}) = E_Z\left[ \mathop{\log}P(Y,Z|\theta)[Y,\theta^{(i)}] \right] \\ =\sum_Z\mathop{\log}P(Y,Z|\theta)P(Z|Y,\theta^{(i)}) \end{aligned} Q(θ,θ(i))=EZ[logP(Y,Zθ)[Y,θ(i)]]=ZlogP(Y,Zθ)P(ZY,θ(i))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值