Loss与加入Loss后的CIFAR10神经网络

1.什么是Loss

        loss被称为损失函数,用于计算出实际输出和目标之间的差距和为更新输出提供依据(反向传播)
        反向传播本质是从loss反推优化方案,给卷积核设置了梯度gradient

1.L1loss

        L1loss:所有实际输出和目标值差距的和 / 样本数量,要求输入输出为浮点数,在括号里加上reduction = 'sum'则不算平均数

比如:
        output = ([1,2,3])
        target = ([1,3,5])
        L1loss = (0 + 1 + 2) / 3 = 1

output = torch.tensor([1,2,3],dtype = torch.float32)
target = torch.tensor([1,3,5],dtype = torch.float32)
loss = L1Loss()
result = loss(output , target)
print(result)

loss = L1Loss(reduction = 'sum')
result = loss(output,target)
print(result)

2.MSELoss

        MSELoss:均方误差,
        (0 + 1^2 + 2^2) / 3 = 1.667

     


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值