1.什么是Loss
loss被称为损失函数,用于计算出实际输出和目标之间的差距和为更新输出提供依据(反向传播)
反向传播本质是从loss反推优化方案,给卷积核设置了梯度gradient
1.L1loss
L1loss:所有实际输出和目标值差距的和 / 样本数量,要求输入输出为浮点数,在括号里加上reduction = 'sum'则不算平均数
比如:
output = ([1,2,3])
target = ([1,3,5])
L1loss = (0 + 1 + 2) / 3 = 1
output = torch.tensor([1,2,3],dtype = torch.float32)
target = torch.tensor([1,3,5],dtype = torch.float32)
loss = L1Loss()
result = loss(output , target)
print(result)
loss = L1Loss(reduction = 'sum')
result = loss(output,target)
print(result)
2.MSELoss
MSELoss:均方误差,
(0 + 1^2 + 2^2) / 3 = 1.667