为了避免使用Map做本地缓存,使用不当带来的内存溢出问题,而使用Guava Cache
其封装了get,put操作;提供线程安全的缓存操作;提供过期策略;提供回收策略;缓存监控。当缓存的数据超过最大值时,使用LRU算法替换。
引入Maven
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>30.1-jre</version>
</dependency>
Guava 的 Cache 初始容量是可根据实际需求进行配置的。默认情况下,初始容量是 16。
需要根据具体的应用场景和预期的缓存大小来决定合适的初始容量。
如果预计缓存中的键值对数量较大,则可以适当增加初始容量以避免频繁的扩容操作。
反之,如果预计缓存中的键值对数量较小,则可以减小初始容量以节省内存空间。
import com.google.common.cache.Cache;
import com.google.common.cache.CacheBuilder;
public class GuavaCacheExample {
public static void main(String[] args) {
// 创建一个 Cache 实例
Cache<String, String> cache = CacheBuilder.newBuilder()
.initialCapacity(100) //初始容量
.maximumSize(1000) // 设置最大缓存大小
.build();
// 向缓存中添加键值对
cache.put("key1", "value1");
cache.put("key2", "value2");
// 判断键是否存在于缓存中
boolean exists = (cache.getIfPresent("key1") != null);
System.out.println(exists); // 输出: true
// 从缓存中获取值
String value1 = cache.getIfPresent("key1");
System.out.println(value1); // 输出: value1
// 删除缓存中的键值对
cache.invalidate("key2");
// 清空整个缓存
cache.invalidateAll();
}
}
当缓存超过最大缓存大小限制时,Guava 的 Cache 和 Caffeine 缓存库会根据其内部的淘汰策略来删除一些键值对以腾出空间给新的键值对。
具体的淘汰策略取决于缓存库的配置和实现。
默认情况下,Guava 的 Cache 使用的是基于 LRU(最近最少使用)算法的淘汰策略。