第四章 树和二叉树

本文详细探讨了二叉树的各种操作,包括递归与非递归算法求二叉树的叶子节点数量、高度和最大宽度。此外,还讨论了如何交换二叉树节点的左右子树,删除指定子树,判断两棵树是否相等或相似,以及如何构造由叶子节点组成的链表。
摘要由CSDN通过智能技术生成

求二叉树叶子结点个数

  • 递归算法
void CountLeaf(BiTree T int& count)    //二叉树T,count用于统计叶子结点个数,初始为0
{	
	if (T)
	{
		if ((!T->lchild)) && (!T - rchild))
		count++;
		CountLeaf(T->lchild,count);
		CountLeaf(T->rchild,count);

	}
}
  • 非递归算法
void CountLeaf(BiTree T )   
{	
	int count = 0; //记录叶结点个数
	Stack S;
	InitStack(S);
	while (T != NULL || !StackEmpty(S)) //当二叉树非空,栈非空时
	{
		if(T != NULL)    //二叉树不为空,沿左子树先访问进栈
		{
			Push(S, T);
			T = T->lchild;
		}
		else
		{
			Pop(S,T)    //当该结点为空时,将栈顶元素出栈,传给T指针(也就是空结点的父节点)
			if(T->lchild==NULL&&T->rchild==NULL)  //如果该结点的左右孩子为空,则为叶节点
				count++;
			T = T->rchild;    //否则按照先序遍历方式继续访问
		}

	}
}

编写算法实现将二叉树bt中每一个结点的左右子树互换,已有ADDQ(Q,bt),DELQ(Q),EMPTY(Q)分别为进队,出队和判别队列是否为空的函数

typedef struct btnode      //声明二叉树结点类型
{
	int data;
	struct btnode* lchild, * rchild;
};btnode

void ChangeNode(btnode* bt)
{
	btnode* p, * q;  //声明两个指针用于交换数据
	if (bt)
	{
		ADDQ(Q, bt);  //将根结点入队
		while (!EMPTY(Q))    //若队列非空
		{
			p = DELQ(Q);  
			q = p->rchild;
			p->rchild = p->lchild;  //交换结点的左右子树
			p->lchild = q;
			if (p->lchild)   //将该结点左右子树压入队列中
				ADDQ(Q, p->lchild);
			if (p->rchild)
				ADDQ(Q, p->rchild);
		}
	}
}

试给出二叉树的自下而上,从左到右的层次遍历算法</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值