POJ - 3764 The xor-longest Path(树上两点路径边权异或和,01字典树)

这是一篇关于解决POJ 3764问题的博客,题目要求在给定的一棵树上找到边权异或和最大的路径。通过分析异或的性质,可以任选一点作为根节点进行DFS,利用01字典树来存储每个节点到根节点的异或和,从而求解任意两点间的路径异或和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:POJ - 3764 The xor-longest Path

题意:

给出一棵 n ( 1 ≤ n ≤ 100000 ) n(1\le n\le100000) n(1n100000)个结点的树,每条边具有边权 w ( 0 ≤ w ≤ 2 31 ) w(0\le w\le 2^{31}) w(0w231),结点编号从 0 0 0 n − 1 n-1 n1。要求求出 异或和最大的路径(即路径上所有边权 w w w异或和最大),所有结点均可作为起点、终点。



分析:

图源自网络
由于异或的性质,其实只需要 任选一点作为根结点,如上图的 A A A,然后 DFS算得所有其他点到A点的异或和 s u m A − X sum_{A-X} sumAX 即可。

那么则有,任意两个点路径上的异或和 s u m X − Y = s u m A − X ⊕ s u m A − Y sum_{X-Y}=sum_{A-X}\oplus sum_{A-Y} sumXY=sumAXsumAY

因为异或时,相同部分的路径边权 w w w相同,异或得 0 0 0,不相同部分相互异或,最后与 0 0 0异或,不变。

例如 F F F J J J路径上的边权异或和 s u m F − J sum_{F-J} sumFJ

s u m A − F = w A − C ⊕ w C − F sum_{A-F}=w_{A-C}\oplus w_{C-F} sumAF=wACwCF
s u m A − J = w A − C ⊕ w C − E ⊕ w E − J sum_{A-J}=w_{A-C}\oplus w_{C-E}\oplus w_{E-J} sumAJ=wACwCEwEJ


   ⟹    s u m A − F ⊕ s u m A − J = ( w A − C ⊕ w C − F ) ⊕ ( w A − C ⊕ w C − E ⊕ w E − J ) \implies sum_{A-F}\oplus sum_{A-J}=(w_{A-C}\oplus w_{C-F})\oplus (w_{A-C}\oplus w_{C-E}\oplus w_{E-J}) sumAFsumAJ=(wACwCF)(wACwCEwEJ)
= ( w A − C ⊕ w A − C ) ⊕ ( w C − F ⊕ w C − E ⊕ w E − J ) = 0 ⊕ ( w C − F ⊕ w C − E ⊕ w E − J ) = (w_{A-C}\oplus w_{A-C})\oplus(w_{C-F}\oplus w_{C-E}\oplus w_{E-J})=0\oplus(w_{C-F}\oplus w_{C-E}\oplus w_{E-J}) =(wACwAC)(wCFwCEwEJ)=0(wCFwCEwEJ)
= w C − F ⊕ w C − E ⊕ w E − J = s u m F − J =w_{C-F}\oplus w_{C-E}\oplus w_{E-J}=sum_{F-J} =wCFwCEwEJ=sumFJ


综上,该题只需要DFS一次,每次遍历到一个结点X就先在01字典树中找到与 s u m A − X sum_{A-X} sumAX异或最大的,然后把 s u m A − X sum_{A-X} sumAX放入01字典树中即可。



以下代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
const int maxn=1e6+50;
const int max_base=31;
int n;
struct edge
{
    int u;
    int v;
    int w;
    int next;
}e[maxn<<1];
int head[maxn],s,cnt;
void addedge(int u,int v,int w)
{
    e[cnt]=edge{u,v,w,head[u]};
    head[u]=cnt++;
    e[cnt]=edge{v,u,w,head[v]};
    head[v]=cnt++;
}
int ch[31*maxn][2],val[31*maxn],tot;
void init()
{
    memset(head,-1,sizeof(head));
    cnt=0;

    tot=1;
    ch[0][0]=ch[0][1]=0;
    val[0]=0;
}
void ins(int x)
{
    int u=0;
    for(int i=max_base;i>=0;i--)
    {
        int cur=(x>>i)&1;
        if(!ch[u][cur])
        {
            ch[tot][0]=ch[tot][1]=0;
            val[tot]=0;
            ch[u][cur]=tot++;
        }
        u=ch[u][cur];
    }
    val[u]=x;
}
int query_max(int x)
{
    int u=0;
    for(int i=max_base;i>=0;i--)
    {
        int cur=(x>>i)&1;
        if(ch[u][cur^1])
            u=ch[u][cur^1];
        else
            u=ch[u][cur];
    }
    return x^val[u];
}
int ans;
void dfs(int u,int pre,int sum)
{
    ans=max(ans,query_max(sum));
    ins(sum);
    for(int i=head[u];i!=-1;i=e[i].next)
    {
        if(e[i].v!=pre)
            dfs(e[i].v,u,sum^e[i].w);
    }
}
int main()
{
    while(~scanf("%d",&n))
    {
        init();
        for(int i=1;i<=n-1;i++)
        {
            int u,v,w;
            scanf("%d %d %d",&u,&v,&w);
            addedge(u,v,w);
        }
        ans=0;
        dfs(0,-1,0);
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值