- 博客(22)
- 收藏
- 关注
原创 【python图像处理】基于灰度三维图的图像顶帽运算和黑帽运算
1、基于灰度三维图的顶帽运算2、基于灰度三维图像的黑帽运算1、基于灰度三维图的顶帽运算kernel=np.ones((10,10),np.uint8)result=cv2.morphologyEx(src,cv2.MORPH_TOPHAT,kernel)2、基于灰度三维图像的黑帽运算result=cv2.morphologyEx(src,cv2.MORPH_BLACKHAT,kernel)...
2020-07-22 10:06:05 379
原创 【python图像处理】霍夫变换检测直线、圆
1、检测圆2、检测直线什么是霍夫变换?霍夫变换是一种特征检测(feature extraction),被广泛应用在图像分析(image analysis)、计算机视觉(computer vision)以及数位影像处理(digital image processing)。霍夫变换是用来辨别找出物件中的特征,例如:线条。1.直线的表示方式对于平面中的一条直线,在笛卡尔坐标系中,常见的有点斜式,两点式两种表示方法。然而在hough变换中,考虑的是另外一种表示方式:使用(r,theta)来表示一条直线。其.
2020-07-22 10:03:11 2620
原创 【python图像处理】图像锐化与边缘检测
1、Roberts算子2、Prewitt算子3、Sobel算子4、Laplacian算子5、Scharr算子6、Canny算子步骤1.步骤2.步骤3.1)2)步骤4.步骤5.7、LOG算子1、Roberts算子在Python中,Roberts算子主要通过Numpy定义模板,再调用OpenCV的filter2D()函数实现边缘提取。该函数主要是利用内核实现对图像的卷积运算。dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borde.
2020-07-17 14:29:57 3161 1
原创 【python图像处理】图像灰度化处理、图像灰度线性变换、图像灰度非线性变换
一、图像灰度化处理1、最大值灰度处理方法2、平均灰度处理方法3、加权平均灰度处理方法二、图像灰度线性变换1、图像灰度上移变换2、图像对比度增强变换3、图像对比度减弱变换4、图像灰度反色变换三、图像灰度非线性变换1、图像灰度非线性变换:2、对数变换3、伽玛变换一、图像灰度化处理1、最大值灰度处理方法该方法的灰度值等于彩色图像R、G、B三个分量中的最大值for i in range(height): for j in range(width): #获取图像R G B最大值 .
2020-07-16 17:47:12 3188
原创 【python图像处理】python图像处理之直方图和图像几何变换
1、直方图2、使用OpenCV统计绘制直方图3、图像仿射变换4、图像透视变换1、直方图import cv2 import numpy as npimport matplotlib.pyplot as pltsrc = cv2.imread("C:/picture/dog.jpg")cv2.imshow("src", src)cv2.waitKey(0)cv2.destroyAllWindows()plt.hist(src.ravel(), 256)plt.show()2、.
2020-07-16 14:23:48 521
原创 【python图像处理】python开运算、闭运算、梯度运算、顶帽运算、黑帽运算
一、开运算二、闭运算三、梯度运算四、顶帽运算五、黑帽运算一、开运算图像开运算是图像依次经过腐蚀、膨胀处理后的过程。图像开运算主要使用的函数morphologyEx,它是形态学扩展的一组函数,其参数cv2.MORPH_OPEN对应开运算。其原型如下:dst = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel)参数dst表示处理的结果,src表示原图像,cv2.MORPH_OPEN表示开运算,kernel表示卷积核。下图表示5*5的卷积核,可以采用函数 np.
2020-07-16 11:15:20 2033
原创 【python图像处理】图像阈值化处理及算法对比、图像腐蚀与图像膨胀
1、二进制阈值化2、反二进制阈值化3、截断阈值化4、阈值化为05、反阈值化为06、图像腐蚀6、图像膨胀1、二进制阈值化该方法先要选定一个特定的阈值量,比如127。(1) 大于等于127的像素点的灰度值设定为最大值(如8位灰度值最大为255)(2) 灰度值小于127的像素点的灰度值设定为0例如,163->255,86->0,102->0,201->255。关键字为 cv2.THRESH_BINARYimg=cv2.imread("C:/picture/dog.jpg").
2020-07-15 17:15:03 822
原创 【python图像处理】python图像融合、加法运算、图像类型转换、图像缩放
一、图像加法运算二、图像融合三、图像类型转换四、图像缩放一、图像加法运算1.Numpy库加法其运算方法是:目标图像 = 图像1 + 图像2,运算结果进行取模运算。当像素值<=255时,结果为“图像1+图像2”,例如:120+48=168当像素值>255时,结果为对255取模的结果,例如:(255+64)%255=642.OpenCV加法运算另一种方法是直接调用OpenCV库实现图像加法运算,方法如下:目标图像 = cv2.add(图像1, 图像2)此时结果是饱和运算,即:当.
2020-07-15 15:52:24 481
原创 【python图像处理】python处理图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波
一、图像平滑二、均值滤波三、方框滤波四、高斯滤波五、中值滤波从头开始study,每日积累!一、图像平滑什么是图像平滑?图像平滑是指受传感器和大气等因素的影响,遥感图像上会出现某些亮度变化过大的区域,或出现一些亮点(也称噪声)。这种为了抑制噪声,使图像亮度趋于平缓的处理方法就是图像平滑。图像平滑实际上是低通滤波,平滑过程会导致图像边缘模糊化。图像平滑是指用于突出图像的宽大区域、低频成分、主干部分或抑制图像噪声和干扰高频成分的图像处理方法,目的是使图像亮度平缓渐变,减小突变梯度,改善图像质量。图像.
2020-07-15 14:13:30 2745
原创 【python图像处理】图像处理基础知识和入门函数
1.读写图片2.像素处理3.传统读取像素方法和修改像素4.numpy读取像素和修改像素5.获取通道属性6.获取感兴趣ROI区域获取融合从头开始study,每日积累!图像都是由像素(pixel)构成的,图像通常包括二值图像、灰度图像和彩色图像。1.二值图像二值图像顾名思义,要么为白色(像素为255),要么为黑色(像素为0)。将灰度图像转换为二值图像的过程,常通过依次遍历判断实现,如果像素>=127则设置为255,否则设置为0。2.灰度图像灰度图像除了黑和白,还有灰色,它把灰度划分为256个.
2020-07-14 18:03:20 1431
原创 【python图像处理】图像处理基础 python+opencv(超基础)
1.读取图片2.灰度处理3.高斯滤波4.中值滤波5.sobel算子提取轮廓6.二值化处理7.膨胀和腐蚀处理错误解决1.ModuleNotFoundError: No module named 'matplotlib.pylot'从头开始study,每日积累!本文涉及到1.灰度转换:将彩色图片转换为灰度图像,常见的R=G=B=像素平均值。2.高斯平滑和中值滤波:去除噪声。3.sobel算子:提取图像边缘轮廓,X方向和Y方向平方和开跟。4.二值化处理:图像转换为黑白两色,通常像素大于127设置为2.
2020-07-14 14:21:04 392
原创 远程记录,sublime与anaconda
1.anaconda安装下载安装包,一路next,安装完成。2.sublime安装百度教程3.sublime使用anaconda的环境在anaconda新建一个环境,名叫test,然后把这个新环境的路径加入到环境变量中。然后打开cmd,activate test进入环境,查看Python版本和pip版本,注意一下他提示出的路径是否是anaconda的。然后进入sublime,新建一个system:配置好新环境python.exe的路径,即可。{ "cmd": ["C:\\P
2020-07-13 14:37:46 393 1
原创 嵌入式系统开发与应用课程设计
ROS机器人定位导航仿真一、安装配置环境二、仿真1.添加环境变量2.运行模型三、创建地图1.运行地图2.gmapping建图四、导航运动1.启动rviz五、基于自建的路线导航一、安装配置环境然后安装需要哦的插件,编译二、仿真1.添加环境变量source ~/ros/devel/setup.bash2.运行模型roslaunch racecar_gazebo racecar.launch 三、创建地图gazebo1.运行地图roslaunch racecar_gazebo ra
2020-07-11 23:00:37 760
原创 人工智能与机器学习课程设计
笑脸识别,口罩识别一、人脸图像特征提取的各种方法(至少包括HoG、Dlib和卷积神经网络特征)1.HOG:(方向梯度直方图)2.Dlib:3.卷积神经网络(CNN):二、dlib安装与使用1.conda 换源2.更新conda3.创建新环境python3.6,名字叫tensorflow4.使用新环境5.安装cmake,boost,wheel,dlib==19.6.16.安装numpy7.pip 一些库8.安装dlib三、dlib笑脸识别四、口罩识别1.训练2.测试一、人脸图像特征提取的各种方法(至少包括H
2020-07-11 22:23:19 10048 2
原创 SVM算法
SVM算法一、sklearn中的SVM1.准备一个简单二分类数据集2.实现svm,先使用一个比较大的C3.使用一个比较小的C,对比C取不同值的效果4.画出除了决策边界以外的两条跟支持向量相关的直线二、SVM中使用多项式特征1.svm解决非线性问题,先生成数据集2.给数据添加一些随机噪声三、高斯核函数1.通过高斯核函数映射来更加直观地理解整个映射的过程2.使用sklearn中封装的高斯核函数四、SVM解决回归问题一、sklearn中的SVM1.准备一个简单二分类数据集import numpy as np
2020-05-25 16:55:34 401
原创 SVM分类
SVM分类1.LDA+鸢尾花2.LDA+月亮3.K-means+鸢尾花4.K-means+月亮5.SVM+鸢尾花6.SVM+月亮对鸢尾花数据集和月亮数据集,分别采用线性LDA、k-means和SVM算法进行二分类可视化分析。1.LDA+鸢尾花import numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsdef LDA(X, y): #根据y等于0或1分类 X1 = np.array([X[
2020-05-19 12:13:18 2092
原创 基于Ubuntu18.04的SLAM中ORB特征点提取
1、循环依次读取一个序列图片(几百张文件名按序号递增的文件),计算相邻3幅图片中的ORB特征点,连线匹配之,并绘制在当前窗口上。即: 第1次计算文件编号为001、002、003的3张图片的ORB特征点,并匹配连线,显示于当前窗口;第2次计算文件编号为003、004、005的3张图片的ORB特征点,并匹配连线,显示于当前窗口,依次类推。2、如果中间出现ORB特征点匹配数小于4,cout输出一个提示...
2020-05-07 16:27:43 376
原创 Iris数据集实战
Iris 数据可视化下载seaborn库pip install seaborn读取文件import pandas as pdimport seaborn as snsimport matplotlib.pyplot as pltdf_Iris = pd.read_csv(r'iris.data.txt')数据可视化花萼长度与宽度/花瓣长度与宽度的可视化from collec...
2020-05-07 16:09:26 594
原创 Fisher线性判别
Fisher线性判别代码实现在理解Fisher线性分类的参考文件的代码基础上(matlab代码),改用python代码完成Fisher判别的推导。重点理解“群内离散度”(样本类内离散矩阵)、“群间离散度”(总类内离散矩阵)的概念和几何意义。代码实现matlab代码clccleardata=xlsread('Iris.csv');Iris1=data(1:50,1:4);Iris2=...
2020-05-07 15:56:23 416
原创 MNISTSHU数据集
【MNISTSHU数据集】一、MNIST定义1.使用sklearn的函数来获取MNIST数据集2.耗时巨大3.取出mnist数据集的数据,并进行数据展示4.定义mnist数据集中数字0-9展示功能函数5.创建一个测试集6.给数据洗牌二、训练一个二分类器三、性能考核1.使用交叉验证测量精度2.混淆矩阵3.精度和召回率4.精度/召回率权衡5.ROC曲线6.训练一个随机森林分类器,并计算ROC和ROC ...
2020-04-30 20:55:50 592
原创 凸优化基础问题回答
凸优化基础问题回答1.计算机几何是研究什么的?2、计算几何理论中(或凸集中)过两点的一条直线的表达式,是如何描述的?与初中数学中那些直线方程有什么差异?有什么好处?3、凸集是什么? 直线是凸集吗?是仿射集吗?4、三维空间中的一个平面,如何表达?5、更高维度的“超平面”,如何表达?6、什么是“凸函数”定义?什么是Hessen矩阵? 如何判别一个函数是凸函数?f(x)=x^3 函数是凸函数吗?7、什么...
2020-04-22 22:16:16 750
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人