小明的背包1(蓝桥杯)

文章讲述了如何使用动态规划方法解决背包问题,即在给定背包容量限制下,最大化获取物品的总价值。通过设置dp数组,逐件物品考虑是否放入背包,计算在不同容量下的最大价值。
摘要由CSDN通过智能技术生成
  • 题目描述

        小明有一个容量为V的背包。这天他去商场购物,商场一共有N 件物品,第i件物品的体积为
Wi,价值为Vi。报告小明想知道在购买的物品总体积不超过V的情况下所能获得的最大价值为多少,请你帮他算算。

  • 输入描述

        输入第1行包含两个正整数N,V,表示商场物品的数量和小明的背包容量。第2~N+1行包含2个正整数w,v,表示物品的体积和价值。(1<N<100,1<V<1000 1<Wi,Vi<1000)

  • 输出描述

        输出一行整数表示小明所能获得的最大价值。

  • 解题思路

        1.采用动态规划(dp)的思想,设置dp[i][j]数组:在j容量下 第1-i件物品中能获得最大价值

        2.如果在j的容量下,第i件物品放不下,所以第1-i件物品中能获得的最大价值等于第1-(i-1)件物品中能获得的最大价值:dp[i][j]=dp[i-1][j];

        3.else:第1-i件物品中能获得的最大价值=MAX(第1-(i-1)件物品中能获得的最大价值,第1-(i-1)件物品中能获得最大价值的基础上拿了第i件物品的情况):dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])

        4.输出dp[N][V],在V容量下 第1-N件物品中能获得最大价值

  • 代码模拟实现
#include<bits/stdc++.h>
using namespace std;
int dp[1000][9000];//dp[i][j] 在j容量下 第1-i件物品中能获得最大价值 
int w[1000];//因为1<N<1000 
int v[1000];
int main()
{
  int N,V;
  cin>>N>>V;//输入物品的数量和小明背包的容量 
  for(int i=1;i<=N;i++)
  {
    cin>>w[i];//物品的体积
    cin>>v[i];//物品的价值
  }
  dp[0][0]=0;//初始化为0,因为在容量0的情况下能获得的价值肯定为0 
  for(int i=1;i<=N;i++)//第一件到第N件物品 
  {
    for(int j=0;j<=V;j++)//容量从0到V 
    {
      if(j<w[i])//背包容量j小于第i件物品的容量 
      {
        dp[i][j]=dp[i-1][j];//因为空间不够,没有把第i件物品放到包里,第1-i件物品中能获得的最大价值=第1-(i-1)件物品中能获得的最大价值 
      }
      else{			//没拿第i件物品 //拿了第i件物品 
        dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);//第1-i件物品中能获得的最大价值=MAX(第1-(i-1)件物品中能获得的最大价值,第1-(i-1)件物品中能获得最大价值的基础上拿了第i件物品的情况) 
      
      }
      
    }
  }
  cout<<dp[N][V];//在V容量下 第1-N件物品中能获得最大价值
  return 0;
}
  • 测试运行结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值