图形变换算法

一、学习目的

(1)掌握多面体的存储方法。
(2)掌握图形的几何变换及投影变换。
(3)掌握三维形体不同投影方法的投影图的生成原理。
(4)掌握多面体投影图绘制的编程方法。

二、学习内容

(1)编程实现一个长方体的正轴测投影图。
(2)编程实现一个长方体的斜平行投影图。
(3)编程实现一个长方体的一点透视图。

三、基本算法


1. ​坐标系变换算法

  • 旋转矩阵构造
    用于将任意投影面对齐到标准坐标系(如XOY平面)。通过绕轴旋转(如绕X/Y/Z轴),结合 ​罗德里格斯旋转公式 或 ​欧拉角,生成旋转变换矩阵,使投影面法向量对齐目标轴(如Z轴)。
  • 平移变换
    将投影面平移到原点,简化投影计算。

2. ​投影矩阵算法

  • 正轴测投影
    通过正交投影矩阵移除深度坐标(Z轴),结合绕轴旋转实现立体效果。
  • 斜平行投影
    引入 ​错切矩阵​(Shear Matrix),沿某一轴向偏移深度坐标,模拟斜视角。
  • 一点透视投影
    构造 ​透视矩阵,引入灭点(Vanishing Point)。

四、具体代码

import numpy as np
import matplotlib.pyplot as plt

class Cube:
    def __init__(self, size=1):
        self.vertices = np.array([
            [0, 0, 0],
            [size, 0, 0],
            [size, size, 0],
            [0, size, 0],
            [0, 0, size],
            [size, 0, size],
            [size, size, size],
            [0, size, size]
        ])
        self.edges = [
            [0, 1], [1, 2], [2, 3], [3, 0],
            [4, 5], [5, 6], [6, 7], [7, 4],
            [0, 4], [1, 5], [2, 6], [3, 7]
        ]

    def orthographic_projection(self):
        return self.vertices[:, :2]

    def oblique_parallel_projection(self, alpha=np.pi/4, l=0.5):
        P = np.array([
            [1, 0, -l*np.cos(alpha)],
            [0, 1, -l*np.sin(alpha)],
            [0, 0, 0]
        ])
        return np.dot(self.vertices, P.T)

    def one_point_perspective_projection(self, d=5):
        P = np.array([
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 1, 0],
            [0, 0, -1/d, 0]
        ])
        homogeneous_vertices = np.hstack((self.vertices, np.ones((8, 1))))
        projected = np.dot(homogeneous_vertices, P.T)
        return (projected[:, :2].T / projected[:, 3]).T

    def plot_projection(self, projection, title):
        projected_vertices = projection()
        plt.figure()
        for edge in self.edges:
            plt.plot(projected_vertices[edge, 0], projected_vertices[edge, 1], 'b')
        plt.title(title)
        plt.axis('equal')
        plt.show()

if __name__ == '__main__':
    cube = Cube()
    cube.plot_projection(cube.orthographic_projection, 'Orthographic Projection')
    cube.plot_projection(lambda: cube.oblique_parallel_projection(), 'Oblique Parallel Projection')
    cube.plot_projection(cube.one_point_perspective_projection, 'One-Point Perspective Projection')

五、运行结果

六、项目简介

# 立方体投影项目

## 项目概述

这个Python项目演示了立方体的三种不同投影方法:正交投影、斜平行投影和一点透视投影。

## 投影方法说明

1. **正交投影(Orthographic Projection)**: 直接忽略Z坐标,将3D点投影到XY平面

2. **斜平行投影(Oblique Parallel Projection)**: 保持平行线,但以一定角度显示

3. **一点透视投影(One-Point Perspective Projection)**: 模拟人眼看到的透视效果

## 运行要求

- Python 3.x

- NumPy

- Matplotlib

## 示例代码

```python

import numpy as np

import matplotlib.pyplot as plt

from cube_projections import Cube

cube = Cube()

cube.plot_projection(cube.orthographic_projection, 'Orthographic Projection')

```

## 预期输出

运行后会显示三个窗口,分别展示三种不同的立方体投影效果图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值