分治算法解题:Maximum Subarray

leetcode上的分治算法有这样一道题:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.


意思是说,给定一个数组,找出其中相加和最大的一部分,并求出最大和。



最先想到的一个思路并不是分治算法,而是一个非常传统的方法。即从第一个元素开始,一个一个地与后面元素相加(和设为sum),每次相加之后与事先设置的ans变量比较,若sum小于0则将其置为0,表示舍弃前面的数。以上面示例的数组为例:


(预设ans = -2)


sum =  -2. ans = -2 -> sum = 0

sum = 1,   ans = 1  -> sum = 1

sum = -2   ans = 1 ->  sum = 0

sum = 4    ans = 4 ->  sum = 4

``````


以此类推即可得出最大的组合,即为ans。return即可。代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int sum = 0, ans = nums[0], s = nums.size();
        for (int i = 0; i < s; i++){
            sum += nums[i];
            ans = max(ans, sum);
            sum = max(sum, 0);
        }
        return ans;
    }
};

当然,这是一道分治算法的题目,自然也有分治算法的解题方法。

用分治算法,最大的问题就是“怎么分”的问题。一开始我想的是找到一个数然后向后分,后来发现这样并不可行;结合上述做法,决定向前分。也就是说,我找到一个元素,然后讨论他前面的数加起来的值,进行比较取舍,然后再加上当前数。仍然以上面的数组为例:

int num[]       //num[2]表示从第一位元素开始到第三个数字所能加出来的最大的数字

num[0] = -2;                             ans = -2;

num[1] = 0 + 1 = 1;                 ans = 1;

num[2] = 1 + (-3) = -2;            ans = 1;

num[3] = 0 + 4 = 4;                 ans = 4;

``````以此类推即可得到最大的ans。代码如下:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int s = nums.size();
        int num[s];
        int maxnum = nums[0];
        num[0] = nums[0];
        for (int i = 1; i < s; i++){
            if (num[i - 1] > 0){
                num[i] = nums[i] + num[i - 1];
            }
            else{
                num[i] = nums[i];
            }
            maxnum = max(num[i], maxnum);
        }
        return maxnum;
    }
};

这道题就这样解决了。总结一下,分治算法的核心就是要分,如何分可以借鉴常规手段,从中得到启发。

如有不足,请各位读者不吝赐教。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值