- 博客(31)
- 资源 (7)
- 收藏
- 关注
原创 【2024年美赛】C题,一二问的模型AUC为1.0,泛化能力超强
我以2023-wimbledon-1304场次数据作为训练集,其他30场比赛作为测试集,采用5-折交叉验证的方式,AUC稳定为1.0,且在30场比赛的预测中,也可达到1.0。考虑到这里可以看作是一个二分类问题,且需要对模型和结果进行解释和可视化,因此,我选择了基于L2正则化的Logistic回归模型。
2024-02-03 04:10:26 312
原创 【国科大】应用矩阵理论 / 矩阵论习题与解答
下载地址:https://mbd.pub/o/bread/ZZqXmZhw。包括“参考教材”,“平时习题”以及“上机题”,之后还会更新历年试卷。
2024-01-30 00:16:36 497
原创 基于BGV/BFV实现具有隐私保护的朴素贝叶斯算法(论文+代码)
客户端有x_k∈{1,2,…,t}的数据x=(x_1,x_2…,x_n),并希望服务器在不泄露x 的任何信息的情况下使用Naive Beyes分类器预测x属于哪一类。例如,x的第一个特征是x_1,即X_1=x_1。要获取A_1中Pr[X_1=x_1│Y=i]的信息,我们需要选择A_1的(i,x_1)条目。然而,作为x的第一个条目,x_1在服务器端只能以加密形式提供。为了解决隐私问题,客户端应该只获得分类结果s^*,而不了解任何关于先验概率和可能性的信息,服务器也不应该了解任何关于客户端数据x的信息。
2023-12-20 20:59:57 524
原创 2021年美赛C题目思路分析——分类模型和Logistic回归模型
2021年美赛C题目分析2021年美国大学生数学建模竞赛MCMC题目,为大数据类。就本题而言,基础算法为二分类和Logistic回归。二分类用于数据的预处理Logistic回归用于数据的处理美赛C题简述(中文):美赛C题目简述(英文):(转自2021年MCM)首先,分析给定的建模数据1. 4440项的数据Global ID目标事件的ID标识,作为预处理和数据后期处理的重要基准Detection Date检测日期Notes记录者的笔记Lab Status对事
2021-02-06 22:18:53 11273 4
原创 2021年美赛B题——解题参考
2021年美赛B题算法——AHP上午更新了本人对于2021年美赛B题目的解法思路,现在对上午的思路进行实现。(为保证比赛的公平,matlab代码暂不公布,赛后公布,需要的话私信可以讲解,必须自己实现)B题简述(英文):(转自2021年MCM)B题简述(中文):运用层次分析法(AHP):(仅供参考!切勿直接套用)Step 1. 划分层次Step 2. 准则层两两比较,得到判断矩阵(此数据矩阵根据30份问卷调查得到)希望大家还是通过查阅相关文献资料或者咨询学校相关专业的教授来
2021-02-06 17:20:46 20831 12
原创 2021年美赛B题目思路(仅供参考)——AHP
2021年美赛B题目算法——AHP2021年美国大学生数学建模竞赛B题目,属于离散型题目。B题目背景:在2019-2020年澳大利亚的火灾季节,每个州都发生了毁灭性的野火,新南威尔士州和维 多利亚州东部的影响最严重。 野火发生在严重干旱和持续的热浪中,气候变化加剧了这 一现象。 图1为该地区2019年10月1日至2020年1月7日的野火热点,黄色显示10月1日的 火灾圣 至1月6日th1月7日红色显示有火灾, 2020. 消防人员使用无人机进行监视和态势感知(SSA)已 经有几年了;SSA无人机携带高
2021-02-06 12:29:59 12673 5
原创 2021年美赛F题目简述(中英文)
2021年美赛F题目2021年美国大学生数学建模竞赛ICMF题目,为政策类题目,主要运用到的算法思路为:1.评价类算法模型2.预测类算法模型3.回归统计模型2021年美赛F题目(中文)2021年美赛F题目(英文)(转自2021年ICM)F题目后续会进行相关讲解,敬请关注!最后预祝各位同学争取佳绩!...
2021-02-05 22:23:27 11808
原创 2021年美赛E题目简述(中英文)
2021年美赛E题目2021年美国大学生数学建模竞赛ICME题目,为环境科学类题目,主要包含预测模型,统计模型等相关模型。2021年美赛E题目(中文):2021年美赛E题目(英文):(转自2021年ICM)E题目在赛后会进行讲解,敬请关注!最后预祝各位同学争取佳绩!...
2021-02-05 22:16:55 10563
原创 2021年美赛D题目简述(中英文)
2021年美赛D题目2021年美国大学生数学建模竞赛ICMD题目,为运筹学/网络科学类题目,主要可分为以下几种思路:1.线性规划2.非线性规划3.整数规划4.动态规划(1,4相关算法已经更新,其他模型后续更新…)2021年美赛C题目(中文):2021年美赛C题目(英文):D题目在竞赛结束后会进行讲解最后预祝各位同学争取佳绩!...
2021-02-05 22:06:24 7220 1
原创 2021年美赛C题目简述(中英文)
2021年美赛C题目2021年美国大学生C题目为大数据类型题目,常用统计类的相关算法模型,推荐SAS,其次Stata,最后SPSS。2021年美赛C题目(中文):2021年美赛C题目(英文):相关算法以及代码实现会更新,敬请关注!最后祝愿各位同学争取佳绩!...
2021-02-05 21:57:20 10225 2
原创 2021年美赛B题目简述(中英文)
2021年美赛B题目2021年美国大学生数学竞赛MCMB题目,为离散型题目,针对离散型题目,主要有以下几种思路:1.离散回归模型2.二元离散选择模型3.二元离散选择模型最大似然估计4.多元离散选择模型5.模型的其它问题6.回归模型评价7.回归系数的解释8.回归系数的统计检验(1,2,4,6,7,8详细已经更新,其他相关模型代码均会更新…)2021年美赛B题目(英文):2021年美赛B题目(中文):B题目(代码)会进一步分析,以及关键代码,私信祝各位同学斩获佳绩!.
2021-02-05 21:47:45 4632 1
原创 2021年美赛A题介绍(中英文)
2021年美国大学生数学建模竞赛A题A题目类型简述:2021年美赛MCMA题为连续性相关问题,模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。A题目(中文):A题目(英文):...
2021-02-05 21:28:26 9516
原创 2021年美国大学生数学建模竞赛(题目详细介绍)
2021年美赛(详细介绍)2021年美赛时间为:2月5日-8日题目类型:MCM问题A(连续)MCM问题B(离散)MCM问题C(数据洞察)ICM问题D(运筹学/网络科学)ICM问题E(环境科学)ICM问题F(政策)小提示:题目(全部):1.复制链接链接:https://pan.baidu.com/s/1UXM6tuCmQH4raEKBNXl9QQ提取码:csdn2.二维码之后会针对每个题型给出相关提示,敬请关注!最后希望参赛选手认真发挥,争取佳绩!...
2021-02-05 21:11:33 6732
原创 拟合算法
拟合算法拟合算法是数学建模中常用的算法之一,被用于解决“预测类问题”。插值和拟合的区别:在插值算法中,得到的多项式f(x)要经过所有的样本点,但如果样本点太多,那么会导致这个多项式次数的过高,会造成“龙格现象(Runge phenomenon)”。尽管我们可以选择“分段”的方法来避免“龙格现象(Runge phenomenon)”,但是更多时候我们更倾向于得到一个确定的曲线,尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即可,这就是“拟合的思想”。我们在拟合算法中使用“最小二乘法”最小二
2021-01-27 15:50:57 5091
原创 Matlab实现最小二乘法
最小二乘法最小二乘法是数学建模中“预测类”题目中最常见的拟合算法之一。最小二乘法的“几何解释”求解“最小二乘法”Matlab中的代码实现:%最小二乘法%确定数据矩阵c=input('请依次输入数据矩阵的各个元素:');[a,b]=size(c);%计算拟合得到的“斜率”和“截距”k=((a*sum(c(:,1).*c(:,2)))-(sum(c(:,2)).*sum(c(:,1))))/((a*sum(c(:,1).^2))-(sum(c(:,1)).^2));b=(((s
2021-01-27 15:24:30 12547 1
原创 样条插值法
样条插值法在实际的数学建模问题中,高次的样条插值多项式也会产生“龙格现象”,因此,常常使用“三次样条插值”来提高“模拟数据”的准确性。三次样条插值三次样条插值法的代码实现:%三次样条插值法a=0;a=input('请输入数据矩阵的行数:');b=0;b=input('请输入数据矩阵的列数:');%初始化目标矩阵c=zeros(a,b);c=input('请依次输入数据矩阵:');disp('数据矩阵:');disp(c);%确定插值区间d=0;d=input('请输
2021-01-26 10:41:51 3812
原创 Hermite(埃尔米特)插值法
Hermite(埃尔米特)插值法Hermite插值法是解决数学建模中预测类问题的最常用的方法,可以有效的解决“已知数据”数量不够的问题。但是,直接使用Hermite插值得到的多项式次数较高,也存在着“龙格现象(Runge phenomenon)”。因此,在实际应用中,往往使用分段三次Hermite插值多项式(PCHIP),来提高“模拟数据的准确性”。这里要说明一下“龙格现象(Runge phenomenon)”,龙格现象(Runge phenomenon)简单的解释为:插值多项式的震荡,即在两段处
2021-01-26 10:23:25 31908 7
原创 2020年APMCM(亚太地区大学生数学建模竞赛)A题
2020年APMCM(亚太地区大学生数学建模竞赛)A题题目(英文)题目(中文)Matlab中的代码实现:clear;data1=[-5.002041336 3.571003073-5.001250267 3.63476944-4.994956493 3.761706591-4.982451439 3.887674093-4.963823318 4.012461662-4.939159393 4.135859013-4.908545971 4.257654667-4.872
2021-01-23 11:26:05 11282 4
原创 TOPSIS法
TOPSIS法TOPSIS法Technique for Order Preference by Similarity to ldeal Solution简称“优劣解距离法”,主要用于解决数学建模中的某一类“评价类问题”,这一类问题通常给出了各项指标的具体数据,需要直接进行比较。Malab中的代码实现:%TOPSIS分析法 (“优劣解距离法”)%这里默认各个评价指标的权重相同%标准化处理a=0;a=input('请输入评价对象的数量:');b=0;b=input('请输入评价指标的
2021-01-23 10:56:44 605
原创 数学建模中矩阵的“标准化”
数学建模中矩阵的“标准化”在数学建模中,为了消除不同指标量纲的影响,需要对已经正向化的矩阵进行标准化处理。标准化的计算公式假设有n个要评价的对象,m个评价指标构成的正向化矩阵如下:那么对于A的标准化后的矩阵,不妨记为B,对于B中每一个元素,有:Matlab中的代码实现:%标准化处理a=0;a=input('请输入评价对象的数量:');b=0;b=input('请输入评价指标的数量:');c=zeros(a,b);c=input('请输入具体的评价数据:');disp('
2021-01-23 10:50:42 18478 1
原创 层次分析法
层次分析法(AHP)层次分析法(The analytic hierarchy process),主要用于解决数学建模中评价类问题。评价类问题是数学建模中较为常见的一类问题,解决这一类问题的途径有很多,但我认为最简单而又高效的方式是以“评分”来解决。但是评分的标准是什么呢?又该以怎样的方式评分?这就引申出了这一关键算法——层次分析法。层次分析法的步骤:Step 1:分析系统中各因素之间的关系,建立系统的“递阶层次结构”这里需要说明的是,不同问题中,对于某一方案,对于决定的它的影响因素的个数可能是
2021-01-22 18:06:33 7925 2
课程设计源代码.zip
2020-06-21
C语言课程设计报告.doc
2020-06-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人