Programming Challenges 习题6.6.7

PC/UVa:110607/10049

Self-describing Sequence

看前边很多题都需要高精度运算就没做,就捡了一个软的柿子捏,结果这个也不软。

这个序列还是很好递推的,从3开始最好推,也就是build()函数,但是循环还不到最大上上限的一半就已经要用很长时间了,所以肯定不能这么做。

通过观察这个自描述序列,可以发现映射后的值小于映射之前的值,所以可以存储逆映射,而且通过uDebug上的测试,最大值2 000 000 000的函数值也只有673365,这么多项的数组内存还是不会超的。

build2()函数负责构建viFirst这个数组,表示数字num第一次出现的位置,前3项分别初始化为0(无意义)、11这个数第一次出现的位置为1)、22这个数第一次出现的位置为2),接下来while中第一次加入的数是4,表示3第一次出现的位置为4,然后sum增加序列中3的数量。

更重要的一点是如何在viFirst中找到3的个数,这可以通过在viFirst中查找第一个大于等于3的索引i来计算。如果viFirst中包含3,相应索引为i,表示自描述序列中位置3的值为i,也就是3的个数;如果viFirst中不包含3,但是第一个大于3的值的索引为i,则有viFirst[i - 1] < 3 < viFirst[i],表示数字i - 1第一次出现的位置小于3,而数字i第一次出现的位置大于3,根据序列的性质,位置3的值为i - 1

如果用O(n)的查找算法来查找个数,又会超时了,所以就又写了二分查找(这又调了好久 ???),这样时间复杂度就从O(n^2)下降到O(nlogn)了。

#include <iostream>
#include <vector>

using namespace std;

void build(vector<int> &viF)
{
	viF.push_back(1);
	viF.push_back(2);
	viF.push_back(2);
	for (size_t i = 3; i < 1000000000; i++)
	{
		for (int j = 0; j < viF[i - 1]; j++)
		{
			viF.push_back(i);
		}
	}
}

int find2(vector<int> &viFirst, int ele)
{
	size_t begin = 0, end = viFirst.size(), mid;
	int ret = -1;
	while (end - begin > 1){
		mid = (begin + end) >> 1;
		if (viFirst[mid] < ele) begin = mid;
		else if (viFirst[mid] > ele) end = mid;
		else{
			ret = mid;
			break;
		}
	}
	if (ret == -1){
		if (viFirst[end] == ele) ret = end;
		else ret = begin;
	}
	return ret;
}

void build2(vector<int> &viFirst)
{
	viFirst.push_back(0);
	viFirst.push_back(1);
	viFirst.push_back(2);
	int sum = 4;
	int num = 3;
	while (1){
		viFirst.push_back(sum); 
		if (sum >= 2000000000) break;
		/*
		for (size_t i = 0; i < viFirst.size(); i++)
		{
			if (num == viFirst[i]){
				sum += i;
				break;
			}
			else if (num < viFirst[i]){
				sum += i - 1;
				break;
			}
		}
		*/
		sum += find2(viFirst, num);
		num++;
	}
}

int main()
{
	int n = 0;
	vector<int> viF, viFirst;
	//build(viF);
	build2(viFirst);
	//cout << "build up" << endl;
	while (cin >> n){
		if (n == 0) break;
		cout << find2(viFirst, n) << endl;
	}
	return 0;
}
/*
100
9999
123456
1000000000
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值