Bresenham算法的推导和改进(适应第一象限的任意斜率任意方向)

直线光栅化的Bresenham算法的推导和改进(适应第一象限的任意斜率任意方向)

简述

在游戏的寻路中或者射线找最远可达点经常会用到Bresenham算法。引用别人的文章来介绍一下Bresenham算法的推导过程。并会给出一个在第一象限的全方向版Bresenham算法的java版本。

原文链接 http://blog.chinaunix.net/uid-21228455-id-2406397.html

直线光栅化

直线光栅化是指用像素点来模拟直线. 比如下图中用蓝色的像素点来模拟红色的直线. 图中坐标系是显示器上的坐标系: x轴向右, y轴向下.
在这里插入图片描述
设deltaX = endX – startX, deltaY = endY – startY. 那么斜率为k = deltaY / deltaX. 我们先考虑简单的情况: 当 0 < k < 1即直线更贴近x轴. 在这种情况下deltaY < deltaX, 所以在光栅化的过程中, 在y轴上描的点比在x轴上描点少. 那么就有一个很直观的光栅化算法:

line_bresenham(startX, startY, endX, endY) {
	deltaX = endX - startX;
	deltaY = endY - startY;
	k = deltaY / deltaX;
	for (x = startX, y = startY; x <= endX; ++x) {
		if (满足一定条件) {
			++y;
		}
		drawPixel(x, y);
	}
}

基于斜率 / 距离的两个简单直线光栅化算法
好了,貌似很简单, 就剩一个问题: “满足一定条件”是什么? 可以用斜率判断, 也可以用上图中直线与光栅线交点 (红点) 与光栅点 (蓝点) 的距离来判断. 继续用伪代码说话:

// 算法1: 用斜率判断
void line_bresenham_k(startX, startY, endX, endY) {
	deltaX = endX - startX;
	deltaY = endY - startY;
	k = deltaY / deltaX;
	for (x = startX, y = startY; x <= endX; ++x) {
		if (x - startX != 0) {
			// 计算当前斜率
			currentK = (y - startY) / (x - startX);
			// 如果当前斜率 < k, 则增加y坐标
			if (currentK < k) {
				++y
			}
		}
		drawPixel(x, y);
	}
}
// 算法2: 用距离判断. 计算直线与光栅线交点y坐标我们需要用到
// 直线方程 y = k (x - startX) + startY
line_bresenham_dist(startX, startY, endX, endY) {
   deltaX = endX - startX;
   deltaY = endY - startY;
   k = deltaY / deltaX;

   for (x = startX, y = startY; x <= endX; ++x) {
   	// 计算直线与光栅线交点的y坐标, 以及与光栅点的距离
   	ptY = k * (x - startX) + startY;
   	dist = ptY - y;
   	// 如果距离 > 0.5或者 < -0.5, 说明我们需要增加y以
   	// 将距离的绝对值控制在0.5之类
   	if (dist > 0.5 || dist < -0.5) {
   		++y;
   	}
   	drawPixel(x, y);
   }
}

消灭浮点数!

以上都是很直观的算法, 下面不直观的来了 – 上面的算法都需要在循环体内执行乘法, 准确的说, 是进行浮点数的乘法. 我们怎么能减少这些浮点数的乘法开销呢? 以基于距离的算法2为例: 首先, k是一个浮点数, 0.5也是浮点数. 我们可以通过将这些表达式都乘以2 * deltaX (整数) 来解决浮点数的问题. 伪代码:

// 算法3: 在算法2的基础上消灭浮点数!
line_bresenham_dist(startX, startY, endX, endY) {
	deltaX = endX - startX;
	deltaY = endY - startY;
	for (x = startX, y = startY; x <= endX; ++x) {
		// 计算直线与光栅线交点的y坐标, 以及与光栅点的距离
		ptY1 = deltaY * (x - startX) + startY * deltaX;
		dist1 = ptY1 - y * deltaX;
		dist1 = dist1 << 1; // dist1 = dist1 * 2
 
		// 如果距离 > 0.5或者 < -0.5, 说明我们需要增加y以
		// 将距离的绝对值控制在0.5之类
		if (dist1 > deltaX || dist < -deltaX) {
			++y;
		}
		drawPixel(x, y);
	}
}

消灭乘法!

圆满解决浮点数运算问题! 不过…乘法运算还在. 消灭乘法问题的办法比较不直观, 让我们想一想: 还有什么办法能简化运算. 直线方程已经不能再简化, 所以唯一的突破口就是能不能利用递推 / 用上一次循环的计算结果推导下一次循环的计算结果.
首先我们来看看在算法2的基础上 (因为算法2计算红点蓝点之间的距离, 比较直观), 怎么通过第n – 1次循环计算出的dist值 (设为d1) 来推导出第n次循环的dist值 (设为d2). 先回顾一下: dist = 直线与光栅线交点的y坐标 – 相应光栅点的y坐标. 我们从几何上直观地考虑: 在第n次循环中, 我们先根据上一次循环所计算出来的d1, 暂时令d2 = d1 + k, 因为我们要保证-0.5 < d2 < 0.5, 而d1 + k满足d1 + k > –0.5, 所以我们只需要考虑当d1 + k > 0.5时, 我们需要将光栅点y坐标增加1, 并且将d2减去1. 显然, 设y1是第n – 1次循环中光栅点的y坐标, y2是第n次循环中光栅点的y坐标. 我们有

  1. d2 = d1 + k – (y2 – y1)
  2. 当d1 + k > 0.5时y2 = y1 + 1, 否则y2 = y1
    我们已经能根据上面的两个关系式写出算法, 不过为了消除乘法和浮点数, 我们将这两个关系式两端同时乘以2 * deltaX, 并且设e = 2 * deltaX * d, 则我们有
  3. e2 = e1 + 2 * deltaY – 2 * deltaX * (y2 – y1)
  4. 当e1 + 2 * deltaY > deltaX时y2 = y1 + 1, 否则y2 = y1
    终于, 没有了乘法 (2 * deltaY在循环体外计算且被简化为左移一位的运算), 没有了浮点数, 根据关系式3) 和 4), 写出算法:
// 算法4: 在算法2, 3的基础上利用递推消灭乘法和浮点数!
line_bresenham(startX, startY, endX, endY) {
	deltaX = endX - startX;
	deltaY = endY - startY;
	e = 0;
	deltaX2 = deltaX << 1;
	deltaY2 = deltaY << 1;
 
	drawPixel(startX, startY);
 
	for (x = startX + 1, y = startY; x <= endX; ++x) {
		// 关系式3) e2 = e1 + 2 * deltaY – 2 * deltaX * (y2 – y1)
		// 关系式4) 当e2 + 2 * deltaY > deltaX时y2 = y1 + 1, 否则y2 = y1
		e += deltaY2;
		if (e > deltaX) {
			e -= deltaX2;
			++y;
		}
		drawPixel(x, y);
	}
}

消灭浮点数! 代数推导

上面递推关系的推导过程是从图形上”直观”地分析得来的, 但是不严密. 我们能不能形式化地证明关系式1), 2), 3), 4)呢? 因为关系式3), 4)和1), 2)能互相推导, 我们只证明3), 4)如下:
在算法3的基础上设第n – 1次循环计算出的dist1值为e1, 对应的y值为y1, 第n次循环计算出的dist1值为e2, 对应的y值为y2. 根据算法3,
dist1 = 2 * deltaY * (x – startX) + 2 * startY * deltaX – 2 * y * deltaX, 则
e2 – e1
= 2 * deltaY * (x – startX) + 2 * startY * deltaX – 2 * y2 * deltaX – [2 * deltaY * (x – 1 – startX) + 2 * startY * deltaX – 2 * y1 * deltaX ]
= – 2 * y2 * deltaX + 2 * deltaY + 2 * y1 * deltaX
= 2 * deltaY – 2 * deltaX * (y2 – y1)
所以e2 = e1 + deltaY – deltaX * (y2 – y1). 所以我们有关系式

  1. e2 = e1 + 2 * deltaY – 2 * deltaX * (y2 – y1)
  2. –deltaX < e1 < deltaX
  3. –deltaX < e2 < deltaX
  4. y2 – y1 = 0 或者 1
    我们根据e1 + 2 * deltaY的取值范围进行讨论. 首先, 因为不等式6), 我们有
    2 * deltaY – deltaX < e1 + 2 * deltaY < 2 * deltaY + deltaX
    情况1: 如果2 * deltaY – deltaX < e1 + 2 * deltaY < deltaX, 则
    2 * deltaY – deltaX – 2 * deltaX * (y2 – y1) < e2 < deltaX– 2 * deltaX * (y2 – y1)
    反证: 若y2 – y1 = 1, 则 2 * deltaY – deltaX – 2 * deltaX < e2 < deltaX – 2 * deltaX = -deltaX, 所以y2 – y1 = 1不成立. 即情况1中y2 = y1.
    情况2: 如果 deltaX < e1 + 2 * deltaY < 2 * deltaY + deltaX, 则
    deltaX – 2 * deltaX * (y2 – y1) < e2 < 2 * deltaY + deltaX – 2 * deltaX * (y2 – y1)
    反证: 若y2 – y1 = 0, 则 deltaX < e2 < 2 * deltaY + deltaX 所以y2 – y1 = 0不成立. 即情况2中y2 = y1 + 1.
    打了这么多字, 累…以上就是当0 < k < 1的情况, 剩余几种情况 (k > 1, –1 < k < 0, k < –1. 不要挑剔我不用”>=”这种符号…) 都可以通过简单的x, y交换以及正负交换来搞定.

第一象限全方向版Bresenham算法

java版本实现如下

void lineBresenham(int startX, int startY, int endX, int endY) {
    int deltaX = endX - startX;
    int deltaY = endY - startY;
    int e = 0;

    int deltaX2 = Math.abs(deltaX << 1);
    int deltaY2 = Math.abs(deltaY << 1);
    print(startX, startY, false);

    boolean isSteep = deltaX>=0 ? Math.abs(deltaX)<Math.abs(deltaY) : Math.abs(deltaX)>Math.abs(deltaY);
    int forX0 = startX; int forY0 = startY; int forX1 = endX; int forY1 = endY;
    int forDeltaX2 = deltaX2; int forDeltaY2 = deltaY2;
    int xStep = deltaX<0 ? -1 : 1; int yStep = deltaY<0 ? -1 : 1;
    // 陡峭和(deltaX<0)的异或来确定是否需要做X, Y运算步骤的反转
    boolean isSwap = isSteep^(deltaX<0);

    if(isSwap) {
        forX0 = startY; forY0 = startX; forX1 = endY; forY1 = endX;
        forDeltaX2 = deltaY2; forDeltaY2 = deltaX2;
        xStep = deltaY<0 ? -1 : 1; yStep = deltaX<0 ? -1 : 1;
    }

    // 以长边来运算,即X必须是长边
    for (int x = forX0+xStep, y = forY0; (xStep>0 ? x<=forX1 : x>=forX1); x+=xStep) {
        e+=forDeltaY2;
        if(e>Math.abs(deltaX)) {
            e-=forDeltaX2;
            y=y+yStep;
        }
        print(x, y, isSwap);
    }
}

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值