- 插入排序(Insertion Sort):将数组分为已排序和未排序两个部分,每次将未排序部分的第一个元素插入到已排序部分的正确位置上。它的基本思想是将一个待排序的序列分成两部分,一部分是已经排序好的序列,另一部分是未排序的序列。然后依次将未排序的元素插入到已排序的序列中,直到所有元素都被插入完毕。插入排序的时间复杂度为O(n^2)。
void insertionSort(int arr[], int n) { for (int i = 1; i < n; i++) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = key; } }
这里的
arr
是待排序的数组,n
是数组长度。首先将数组中的第一个元素作为已排序的序列,然后从第二个元素开始遍历整个数组。在每次遍历中,将当前元素存储到key
变量中,将其前面的元素向右移动,直到找到一个位置,使得当前元素可以被插入到已排序的序列中。最后将key
插入到已排序的序列中。 - 选择排序(Selection Sort):从数组中选出最小的元素,与数组的第一个元素交换位置,然后从剩余的元素中选出最小的元素,与数组的第二个元素交换位置,以此类推。它的基本思想是每次选择数组中最小的元素,然后将其放置在已排序的序列的末尾。选择排序的时间复杂度为O(n^2)。
void selectionSort(int arr[], int n) { for (int i = 0; i < n - 1; i++) { int min_idx = i; for (int j = i + 1; j < n; j++) { if (arr[j] < arr[min_idx]) { min_idx = j; } } int temp = arr[i]; arr[i] = arr[min_idx]; arr[min_idx] = temp; } }
这里的
arr
是待排序的数组,n
是数组长度。首先遍历整个数组,每次找到未排序的部分中最小的元素的下标,并将其与已排序的部分的末尾元素交换。最终,数组将被排序。 - 快速排序(Quick Sort):通过分治的思想,将一个数组分成两个子数组,其中一个子数组的所有元素都比另一个子数组的所有元素小,然后对这两个子数组分别进行快速排序,递归执行该过程,直到子数组长度为 1。它的基本思想是通过分治法将一个待排序的序列分成两部分,一部分是小于基准元素的序列,另一部分是大于等于基准元素的序列。然后分别对这两部分进行递归排序,最终得到整个序列的有序排列。快速排序的时间复杂度为O(nlogn)。
void quickSort(int arr[], int low, int high) { if (low < high) { int pivot = partition(arr, low, high); quickSort(arr, low, pivot - 1); quickSort(arr, pivot + 1, high); } } int partition(int arr[], int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j = low; j <= high - 1; j++) { if (arr[j] < pivot) { i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return i + 1; } void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; }
这里的
arr
是待排序的数组,low
和high
分别是序列的起始位置和结束位置。首先在序列中选择一个基准元素,然后将整个序列分成两部分,使得左边的序列元素都小于等于基准元素,右边的序列元素都大于基准元素。然后分别对左边和右边的序列进行递归排序。在实现中,我们使用partition
函数将数组分成两部分,并返回基准元素的下标。在partition
函数中,我们使用i
来记录左部分序列的末尾元素的下标,然后遍历序列中除了基准元素外的所有元素,将小于基准元素的元素交换到左部分序列的末尾。最后,将基准元素交换到左右两部分序列的中间位置。 - 归并排序(Merge Sort):将一个数组分成两个子数组,然后对这两个子数组分别进行归并排序,最后将两个有序的子数组合并成一个有序的数组。是一种基于分治思想的排序算法,它将待排序的序列递归地分成两个子序列,对每个子序列进行排序,然后再将它们合并成一个有序序列。归并排序的时间复杂度为O(nlogn)。
void mergeSort(int arr[], int left, int right) { if (left < right) { int mid = left + (right - left) / 2; mergeSort(arr, left, mid); mergeSort(arr, mid + 1, right); merge(arr, left, mid, right); } } void merge(int arr[], int left, int mid, int right) { int n1 = mid - left + 1; int n2 = right - mid; int L[n1], R[n2]; for (int i = 0; i < n1; i++) { L[i] = arr[left + i]; } for (int j = 0; j < n2; j++) { R[j] = arr[mid + 1 + j]; } int i = 0, j = 0, k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k++] = L[i++]; } else { arr[k++] = R[j++]; } } while (i < n1) { arr[k++] = L[i++]; } while (j < n2) { arr[k++] = R[j++]; } }
这里的
arr
是待排序的数组,left
和right
分别是序列的起始位置和结束位置。首先在mergeSort
函数中将数组分成两个子序列,然后分别对左边和右边的子序列进行递归排序,最后将它们合并成一个有序序列。在实现中,我们使用merge
函数将两个有序子序列合并成一个有序序列。在merge
函数中,我们首先计算出两个子序列的长度,并创建两个临时数组L
和R
来存储这两个子序列。然后使用两个指针i
和j
分别遍历这两个子序列,将它们合并成一个有序序列。最后将有序序列中剩余的元素添加到数组中。 - 计数排序(Counting Sort):对于一个给定的数组,计算出每个元素出现的次数,然后按照元素大小从小到大的顺序,依次将元素输出到结果数组中。是一种非比较排序算法,用于排序由整数组成的数组。它的基本思想是,针对待排序的数据中每个元素的值,确定出小于它的元素的个数,从而确定它在有序序列中的位置。计数排序的时间复杂度为 O(n+k),其中 k 表示数据中的最大值和最小值的差值加 1。
#include <stdio.h> #include <stdlib.h> void countingSort(int arr[], int n) { int max = arr[0]; for (int i = 1; i < n; i++) { if (arr[i] > max) { max = arr[i]; } } int *count = (int*)calloc(max + 1, sizeof(int)); for (int i = 0; i < n; i++) { count[arr[i]]++; } int j = 0; for (int i = 0; i <= max; i++) { while (count[i]-- > 0) { arr[j++] = i; } } free(count); } int main() { int arr[] = {5, 2, 9, 5, 2, 3, 10, 1, 7, 8}; int n = sizeof(arr) / sizeof(arr[0]); countingSort(arr, n); printf("Sorted array: "); for (int i = 0; i < n; i++) { printf("%d ", arr[i]); } return 0; }
在这个例子中,我们首先找到了待排序数组中的最大值,然后创建了一个大小为最大值加 1 的计数数组 count。接着,我们遍历了待排序数组,对每个元素在 count 数组中进行计数。最后,我们将计数数组中的元素按顺序输出到待排序数组中,从而得到排序后的数组。
数组的插入、选择、快速、归并、计数排序
最新推荐文章于 2024-04-25 00:00:00 发布
本文介绍了四种常见的排序算法:插入排序、选择排序、快速排序和归并排序,以及非比较算法——计数排序。这些算法的时间复杂度从O(n^2)到O(nlogn)不等,适用于不同的场景。插入排序和选择排序的时间复杂度为O(n^2),而快速排序和归并排序为O(nlogn),计数排序则为O(n+k)。
摘要由CSDN通过智能技术生成