数组的插入、选择、快速、归并、计数排序

本文介绍了四种常见的排序算法:插入排序、选择排序、快速排序和归并排序,以及非比较算法——计数排序。这些算法的时间复杂度从O(n^2)到O(nlogn)不等,适用于不同的场景。插入排序和选择排序的时间复杂度为O(n^2),而快速排序和归并排序为O(nlogn),计数排序则为O(n+k)。
摘要由CSDN通过智能技术生成
  1. 插入排序(Insertion Sort):将数组分为已排序和未排序两个部分,每次将未排序部分的第一个元素插入到已排序部分的正确位置上。它的基本思想是将一个待排序的序列分成两部分,一部分是已经排序好的序列,另一部分是未排序的序列。然后依次将未排序的元素插入到已排序的序列中,直到所有元素都被插入完毕。插入排序的时间复杂度为O(n^2)。
    void insertionSort(int arr[], int n) {
        for (int i = 1; i < n; i++) {
            int key = arr[i];
            int j = i - 1;
            while (j >= 0 && arr[j] > key) {
                arr[j + 1] = arr[j];
                j--;
            }
            arr[j + 1] = key;
        }
    }
    

    这里的 arr 是待排序的数组,n 是数组长度。首先将数组中的第一个元素作为已排序的序列,然后从第二个元素开始遍历整个数组。在每次遍历中,将当前元素存储到 key 变量中,将其前面的元素向右移动,直到找到一个位置,使得当前元素可以被插入到已排序的序列中。最后将 key 插入到已排序的序列中。

  2. 选择排序(Selection Sort):从数组中选出最小的元素,与数组的第一个元素交换位置,然后从剩余的元素中选出最小的元素,与数组的第二个元素交换位置,以此类推。它的基本思想是每次选择数组中最小的元素,然后将其放置在已排序的序列的末尾。选择排序的时间复杂度为O(n^2)。
    void selectionSort(int arr[], int n) {
        for (int i = 0; i < n - 1; i++) {
            int min_idx = i;
            for (int j = i + 1; j < n; j++) {
                if (arr[j] < arr[min_idx]) {
                    min_idx = j;
                }
            }
            int temp = arr[i];
            arr[i] = arr[min_idx];
            arr[min_idx] = temp;
        }
    }
    

    这里的 arr 是待排序的数组,n 是数组长度。首先遍历整个数组,每次找到未排序的部分中最小的元素的下标,并将其与已排序的部分的末尾元素交换。最终,数组将被排序。

  3. 快速排序(Quick Sort):通过分治的思想,将一个数组分成两个子数组,其中一个子数组的所有元素都比另一个子数组的所有元素小,然后对这两个子数组分别进行快速排序,递归执行该过程,直到子数组长度为 1。它的基本思想是通过分治法将一个待排序的序列分成两部分,一部分是小于基准元素的序列,另一部分是大于等于基准元素的序列。然后分别对这两部分进行递归排序,最终得到整个序列的有序排列。快速排序的时间复杂度为O(nlogn)。
    void quickSort(int arr[], int low, int high) {
        if (low < high) {
            int pivot = partition(arr, low, high);
            quickSort(arr, low, pivot - 1);
            quickSort(arr, pivot + 1, high);
        }
    }
    
    int partition(int arr[], int low, int high) {
        int pivot = arr[high];
        int i = low - 1;
        for (int j = low; j <= high - 1; j++) {
            if (arr[j] < pivot) {
                i++;
                swap(&arr[i], &arr[j]);
            }
        }
        swap(&arr[i + 1], &arr[high]);
        return i + 1;
    }
    
    void swap(int* a, int* b) {
        int temp = *a;
        *a = *b;
        *b = temp;
    }
    

    这里的 arr 是待排序的数组,lowhigh 分别是序列的起始位置和结束位置。首先在序列中选择一个基准元素,然后将整个序列分成两部分,使得左边的序列元素都小于等于基准元素,右边的序列元素都大于基准元素。然后分别对左边和右边的序列进行递归排序。在实现中,我们使用 partition 函数将数组分成两部分,并返回基准元素的下标。在 partition 函数中,我们使用 i 来记录左部分序列的末尾元素的下标,然后遍历序列中除了基准元素外的所有元素,将小于基准元素的元素交换到左部分序列的末尾。最后,将基准元素交换到左右两部分序列的中间位置。

  4. 归并排序(Merge Sort):将一个数组分成两个子数组,然后对这两个子数组分别进行归并排序,最后将两个有序的子数组合并成一个有序的数组。是一种基于分治思想的排序算法,它将待排序的序列递归地分成两个子序列,对每个子序列进行排序,然后再将它们合并成一个有序序列。归并排序的时间复杂度为O(nlogn)。
    void mergeSort(int arr[], int left, int right) {
        if (left < right) {
            int mid = left + (right - left) / 2;
            mergeSort(arr, left, mid);
            mergeSort(arr, mid + 1, right);
            merge(arr, left, mid, right);
        }
    }
    
    void merge(int arr[], int left, int mid, int right) {
        int n1 = mid - left + 1;
        int n2 = right - mid;
        int L[n1], R[n2];
        for (int i = 0; i < n1; i++) {
            L[i] = arr[left + i];
        }
        for (int j = 0; j < n2; j++) {
            R[j] = arr[mid + 1 + j];
        }
        int i = 0, j = 0, k = left;
        while (i < n1 && j < n2) {
            if (L[i] <= R[j]) {
                arr[k++] = L[i++];
            } else {
                arr[k++] = R[j++];
            }
        }
        while (i < n1) {
            arr[k++] = L[i++];
        }
        while (j < n2) {
            arr[k++] = R[j++];
        }
    }
    

    这里的 arr 是待排序的数组,leftright 分别是序列的起始位置和结束位置。首先在 mergeSort 函数中将数组分成两个子序列,然后分别对左边和右边的子序列进行递归排序,最后将它们合并成一个有序序列。在实现中,我们使用 merge 函数将两个有序子序列合并成一个有序序列。在 merge 函数中,我们首先计算出两个子序列的长度,并创建两个临时数组 LR 来存储这两个子序列。然后使用两个指针 ij 分别遍历这两个子序列,将它们合并成一个有序序列。最后将有序序列中剩余的元素添加到数组中。

  5. 计数排序(Counting Sort):对于一个给定的数组,计算出每个元素出现的次数,然后按照元素大小从小到大的顺序,依次将元素输出到结果数组中。是一种非比较排序算法,用于排序由整数组成的数组。它的基本思想是,针对待排序的数据中每个元素的值,确定出小于它的元素的个数,从而确定它在有序序列中的位置。计数排序的时间复杂度为 O(n+k),其中 k 表示数据中的最大值和最小值的差值加 1。
    #include <stdio.h>
    #include <stdlib.h>
    
    void countingSort(int arr[], int n) {
        int max = arr[0];
        for (int i = 1; i < n; i++) {
            if (arr[i] > max) {
                max = arr[i];
            }
        }
    
        int *count = (int*)calloc(max + 1, sizeof(int));
    
        for (int i = 0; i < n; i++) {
            count[arr[i]]++;
        }
    
        int j = 0;
        for (int i = 0; i <= max; i++) {
            while (count[i]-- > 0) {
                arr[j++] = i;
            }
        }
    
        free(count);
    }
    
    int main() {
        int arr[] = {5, 2, 9, 5, 2, 3, 10, 1, 7, 8};
        int n = sizeof(arr) / sizeof(arr[0]);
    
        countingSort(arr, n);
    
        printf("Sorted array: ");
        for (int i = 0; i < n; i++) {
            printf("%d ", arr[i]);
        }
    
        return 0;
    }
    

    在这个例子中,我们首先找到了待排序数组中的最大值,然后创建了一个大小为最大值加 1 的计数数组 count。接着,我们遍历了待排序数组,对每个元素在 count 数组中进行计数。最后,我们将计数数组中的元素按顺序输出到待排序数组中,从而得到排序后的数组。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值