Colorful Tree
题意
给定一颗树,再给定树上每一个节点一个颜色,求树上总共n(n-1)/2条路径每条路径上不同颜色数的总和。
做法
首先,
总和=总路径数∗颜色数−∑每一种颜色没参与的贡献
.
对于某一个id节点来说,算没参与贡献,可以通过求其最高同色子节点,以这些节点和其子树节点与id形成的路径必然会有重复id节点的颜色,即id节点对这些路径没有贡献。
也就是求对于id节点这个颜色来说,它的同色子节点对其子树节点造成的最大“截断”数量。
最后还要减去所有颜色剩下的连通块。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 200005;
typedef long long ll;
int n;
int c[maxn],T,tot;
int size[maxn];
bool vis[maxn];
ll ans;
vector<int> e[maxn];
ll s[maxn];
void dfs(int id,int fa){
size[id]=1;
ll son=0;
for(auto ep:e[id]){
if(ep==fa) continue;
ll last = s[c[id]];
dfs(ep,id);
size[id] += size[ep];
ll add = s[c[id]] - last;
ans -= (ll)(size[ep] - add) * (size[ep] - add - 1LL) / 2LL;
son += size[ep] - add;
}
s[c[id]] += son + 1;
}
int main(){
freopen("input.txt","r",stdin);
int T=1;
while(~scanf("%d",&n)){
for(int i=0;i<=n;i++)
e[i].clear();
memset(vis,0,sizeof vis);
memset(s,0,sizeof s);
ll cnt = 0;
for(int i=1;i<=n;i++){
scanf("%d",&c[i]);
if(!vis[c[i]]) cnt++;
vis[c[i]]=1;
}
for(int i=1;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
e[u].push_back(v);
e[v].push_back(u);
}
ans = (ll)n * (n-1LL) / 2LL * cnt;
dfs(1,0);
for(int i=1;i<=n;i++){
if(!vis[i]) continue;
ans -= (ll)(n - s[i]) * (n - s[i] - 1LL) / 2LL;
}
printf("Case #%d: %lld\n",T++,ans);
}
return 0;
}