[NOIP2001 普及组] 数的计算
题目描述
给出自然数 n n n,要求按如下方式构造数列:
- 只有一个数字 n n n 的数列是一个合法的数列。
- 在一个合法的数列的末尾加入一个自然数,但是这个自然数不能超过该数列最后一项的一半,可以得到一个新的合法数列。
请你求出,一共有多少个合法的数列。两个合法数列 a , b a, b a,b 不同当且仅当两数列长度不同或存在一个正整数 i ≤ ∣ a ∣ i \leq |a| i≤∣a∣,使得 a i ≠ b i a_i \neq b_i ai=bi。
输入格式
输入只有一行一个整数,表示 n n n。
输出格式
输出一行一个整数,表示合法的数列个数。
样例 #1
样例输入 #1
6
样例输出 #1
6
提示
样例 1 解释
满足条件的数列为:
- 6 6 6
- 6 , 1 6, 1 6,1
- 6 , 2 6, 2 6,2
- 6 , 3 6, 3 6,3
- 6 , 2 , 1 6, 2, 1 6,2,1
- 6 , 3 , 1 6, 3, 1 6,3,1
数据规模与约定
对于全部的测试点,保证 1 ≤ n ≤ 1 0 3 1 \leq n \leq 10^3 1≤n≤103。
说明
本题数据来源是 NOIP 2001 普及组第一题,但是原题的题面描述和数据不符,故对题面进行了修改,使之符合数据。原题面如下,谨供参考:
我们要求找出具有下列性质数的个数(包含输入的正整数 n n n)。
先输入一个正整数 n n n( n ≤ 1000 n \le 1000 n≤1000),然后对此正整数按照如下方法进行处理:
- 不作任何处理;
- 在它的左边拼接一个正整数,但该正整数不能超过原数,或者是上一个被拼接的数的一半;
- 加上数后,继续按此规则进行处理,直到不能再加正整数为止。
解决思路
这同样是一个递归算法的题(最近都会练习递归),一般思路从寻找递归关系式和终止条件入手
根据样例来看,6本身不做处理算一种,6后面可以加的数是1 ~ 6/2也就是1 ~ 3,然后分别再思考61,62,63后面又能加的数,这里递归的就不是某个f(n),而是一个范围,也就是1 ~ n/2,所以进递归的应该是自增变量i,也就是f(i),为了计算答案,我们需要一个全局变量ans用来做每一次调用f(i)的自增,因为进函数一次就说明后面跟了一个数,这本身就算是一种答案。所以有了以下的递归函数:
long long ans = 0;
void f(int n)
{
ans++;
for (int i = 1; i <= n / 2; i++)
f(i);
}
但是这么做的话,会有一个超时的问题,也就是当n=1000的时候会TLE。
为了解决TLE的问题,这里就用到了“DFS记忆化搜索”的方法,在n很大的时候,会经常出现已经遇到过的f(i),我们开辟一个数组,就把已经计算过的i记忆下来,下次遇到的时候就直接跳过,这里重点不在DFS,重点掌握递归函数
int a[1001] = { 0 };
void f(int n)
{
if (a[n] != 0) return; //已经求过了的n就跳过
a[n] = 1; //6本身也算一种方法
for (int i = 1; i <= n / 2; i++)
{
f(i);
a[n] = a[n] + a[i]; //把每种情况累加起来
}
}